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Abstract The Compact Muon Solenoid (CMS) experiment at the European Or-
ganization for Nuclear Research (CERN) deploys its data collections, simulation
and analysis activities on a distributed computing infrastructure involving more
than 70 sites worldwide. The historical usage data recorded by this large infras-
tructure is a rich source of information for system tuning and capacity planning.
In this paper we investigate how to leverage machine learning on this huge amount
of data in order to discover patterns and correlations useful to enhance the overall
efficiency of the distributed infrastructure in terms of CPU utilization and task
completion time. In particular we propose a scalable pipeline of components built
on top of the Spark engine for large-scale data processing, whose goal is collecting
from different sites the dataset access logs, organizing them into weekly snapshots,
and training, on these snapshots, predictive models able to forecast which datasets
will become popular over time. The high accuracy achieved indicates the ability
of the learned model to correctly separate popular datasets from unpopular ones.
Dataset popularity predictions are then exploited within a novel data caching
policy, called PPC (Popularity Prediction Caching). We evaluate the performance
of PPC against popular caching policy baselines like LRU (Least Recently Used).
The experiments conducted on large traces of real dataset accesses show that PPC
outperforms LRU reducing the number of cache misses up to 20% in some sites.
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1 Introduction

The Compact Muon Solenoid (CMS) [13] experiment at the Large Hadron Col-
lider (LHC) particle accelerator of the European Organization for Nuclear Re-
search (CERN) designed and implemented a computing model that gave a crucial
contribution to the recent discovery of the Higgs boson [14]. Within this model,
distributed monitoring infrastructures have collected for many years many kind of
data and metadata about the usage of the distributed computing infrastructure
by its large community of users.

The monitoring infrastructure deployed at the Worldwide LHC Computing
Grid (WLCG) [33] is undergoing a major revision to better cope with volume
and variety of monitored data. This is due to either a higher LHC luminosity (an
accelerator parameter directly linked to CMS discovery potential) expected in the
next runs, and the deployment of new resources into the infrastructure. In this
scenario, the traditional relational database systems previously used to store and
serve monitoring events hit scalability limits [4].

To overcome this problem, in 2015 CMS has begun to store into a Hadoop!
cluster nearly 4 PB of monitoring data produced by its monitoring systems. This
data includes information about users, jobs lifecycle, resources utilization, sites
efficiency, software releases, datasets access logs and usage statistics. The data is
enriched with information coming from conference calendars, internal deadlines
and trouble-ticketing services, which can bring valuable insights on the usage pat-
terns.

Utilizing this huge collection of monitoring data, the CMS community is pro-
moting exploratory activities using Big Data analytics approaches to discover pat-
terns and correlations that can be exploited to reduce operational costs and/or to
improve throughput and efficiency.

Hadoop offers the ability to process very large data sets using the MapReduce
programming model [16]. Over the last decade, it has emerged as the de-facto stan-
dard for big data processing, largely adopted in both the research and industrial
communities [2,32]. A recent benchmark proved that the CMS dashboard and
monitoring systems can largely benefit from MapReduce parallelism and Spark?
in-memory distributed computing [27]. Specifically, the speedup achieved on the
processing of dataset access information ranges between 2x to 50x compared to
the previously used RDBMS architecture.

This work leverages the CMS Hadoop data store, and describes a scalable data
mining pipeline designed to predict the number of future accesses to new and
existing datasets, which can be further probed to identify the ideal number of
dataset replicas and their best locations.

Data placement policies based on replicas of popular data across Grid sites
have been researched since the early days [31] and have focused on the analysis of
dataset popularity distributions from access patterns. We explore state-of-the-art
machine learning techniques to learn from past usage information which dataset
will become popular in the future and exploit such knowledge to optimize dataset
caching at every site of the CMS distributed infrastructure. In order to model our
popularity classification problem, we aggregate historical data about datasets ac-

1 hadoop.apache.org

2 spark.apache.org
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cesses on a weekly basis. The dataset attributes include physics information parsed
from the dataset namespace, as well as static and runtime statistics about the use
of each dataset. On the basis of this information we construct different sets of
features given in input to streamlining classifiers trained to predict dataset pop-
ularity. This prediction task involves many different cases. For example, consider
new datasets produced from either LHC collisions or from simulated workflows. For
these datasets we have only static information related to their creators, locations,
and namespaces. On the other hand, existing datasets, in addition to the above
metadata, are associated with historical usage information. The performance of
the classifiers trained for the two cases are obviously different, even if the output
popularity label predicted has the same meaning.

Our contributions. We list here the main contributions of this work:

1. We propose and implement a scalable data mining pipeline, built on top of
the CMS Hadoop data store, to predict the popularity of new and existing
datasets accessed by jobs processing any of the 25 event types stored in the
distributed CMS infrastructure. We cast the problem of predicting dataset
accesses to a binary classification problem where we are interested to forecast
if a given dataset will be popular or not at time slot ¢ in a given CMS site s,
i.e., it will be accessed for more than x times during time slot ¢ at site s. Our
experiments show that the proposed predictive models reach very satisfying
accuracy, indicating the ability to correctly separate popular datasets from
unpopular ones.

2. We propose a novel intelligent data caching policy, PPC (Popularity Prediction
Caching). This caching strategy exploits the popularity predictions achieved
with our best performing classifier to optimize the eviction policy implemented
at each site of the CMS infrastructure. We assess the effectiveness of this
caching policy by measuring the hit rates achieved by PPC and caching base-
lines such as LRU (Least Recently Used) in managing the dataset access re-
quests over a two-year timespan at 6 CMS sites. The results of our simulation
show that PPC outperforms LRU up to 20% in some sites.

The paper is structured as follows. Section 2 outlines background knowledge
and related work. Section 3 introduces the dataset popularity problem and de-
scribes the raw data available, the groups of features extracted from this data and
how these features are used for the prediction task. Section 4 presents the exper-
imental settings and discusses the results of the experiments conducted to asses
the effectiveness of our solution to the dataset popularity prediction problem. The
impact of data cleaning and feature engineering steps is also assessed. Section 5
describes how to harness popularity predictions to implement an effective dataset
replacement policy for the CMS distributed infrastructure. Finally, section 6 draws
some conclusions and outlines future work.

2 Background and Related Works
Predictive models based on statistical learning techniques are suitable for studying

the performance and scalability of complex computing infrastructures. The train-
ing process requires to abstract features from a variety of measurements usually
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collected through historical logging activities, and to devise relevant metrics to
estimate the behavior of the system under investigation. Log analysis related to
the processing of structured or unstructured information collected through several
layers of monitoring architectures is a promising field of research [29,23].

In our context, dataset access logs represent an attractive yet critical source
for data analysis. CMS has recently promoted research activities related to the
mining of dataset access patterns leveraging Big Data analytics techniques. The
management of the CMS infrastructure would largely benefit from the knowledge
of these patterns, which could be exploited for driving dataset caching and replica-
tion policies. Job features, site characteristics and dataset access patterns can be
analyzed with Machine Learning (ML) techniques able to predict with acceptable
accuracy the system behavior, striking a balance between quality of service and
storage allocation.

To this regard, two research directions are of particular interest: how to lever-
age scalable ML for predicting dataset popularity and how to use the obtained
predictions to implement an efficient dataset caching policy.

2.1 Dataset Popularity

The field of dataset popularity prediction for the CMS experiment was pioneered
by the initiative at Cornell University [24]. The paper shows a proof-of-concept
based on a use case belonging to a larger CMS Analytics project having the ulti-
mate goal to build adaptive models of CMS Computing [7]. The authors tested the
feasibility of training a dataset popularity classifier from the information retrieved
from the previous CMS monitoring infrastructure.

Another major experiment at CERN, LHCb, relies on a data mining engine for
studying the interactions of heavy particles containing the bottom quark. Yandex
has provided the LHCD core simulation software with fast access to the details of
specific event types. Geared specifically to the LHCDb needs, the search system in-
dexes and identifies events satisfying specific selection criteria using the MatrixNet
algorithm [22].

Similarly, the ATLAS experiment has developed a very simple popularity pre-
diction tool [5] for its distributed data management system. Historical access in-
formation about files, datasets, users and sites are used to make a prediction about
the future popularity of data and its possible trends.

Dataset popularity is also addressed outside the particle physics domain. For
instance, Netflix handles video replicas and tries to implements services that give
users what they want, ideally before they know it. This is achieved through multi-
ple neural network models for different distributed datasets [15]. The approach is
based on the intuitive idea that the preferences of a user can be inferred by exploit-
ing past ratings of that user, as well as users with related behavior patterns. Since
only a few factors contribute to individual taste, hyper-parameter optimization is
performed upon each combination of users’ preference parameters.

Each of these systems is tailored to the specific needs and data formats of the
corresponding research domain. They need to take into account billions of records
of historical data, which makes it impractical or impossible standard processing
with conventional DBMS. Big Data infrastructures can aid the development of
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simulation systems capable to aggregate massive amount of data with speed and
ease, as well as trigger the discovery of common patterns.

Our work moves forward from the experience in [24] and explores Big Data
ML techniques aligned with CMS recent developments [27]. Our data analytics
and prediction platform is implemented by a pipeline of scalable Spark components
fully integrated in the CMS Hadoop data store. Previous work focused on only five
physics datatiers, while we propose an online solution for building classification
models targeting the entire range of 25 CMS datatiers (thus covering the whole
CMS experiment) and keeping them fresh through a viable model update strategy.
Furthermore, we discuss in details the features used to train our model, introduce
new features involving an improvement of about 10% in the overall classification
accuracy, and distinguish the prediction task for new and already existing datasets.
Unfortunately, the results of the previous experience are not comparable with ours
due to the radical changes in the monitoring infrastructure [27,28].

2.2 Dataset caching

Our work exploits the outcomes of the proposed dataset popularity prediction
pipeline to feed a novel intelligent caching strategy. A similar approach is dis-
cussed in [8] where the LRU policy is extended to make it sensible to Web access
patterns extracted using data mining techniques. The authors build a caching
strategy called S2 implementing multiclass classification based on decision trees.
S2 is applied to a label representing the distance between a given URL and the
next access. S2 results in having an accuracy ranging between 70% and 87% on
the two workloads tested.

The work in [30] proposes a linear ranking function for replacing the objects in a
Web document cache and improves the results in [8]. Rather than extending the
LRU policy by using frequent patterns from Web log data, [30] uses a model that
extends the Greedy Dual Size Frequency caching (GDSF) policy [12]. A survey of
the approaches to data caching based on web logs was conducted by [18]. Although
the work is not very recent, it is interesting to notice that only three works used
classifiers as we do. The author in [34] leverages previous results from [30] and
extends the ranking function with predictions of the future occurrence frequency
of an object based on a rule table, and improves the hit rates of the basic GDSF
policy. A similar approach based on rule table is described in [21].

We share the same experimental approach of the above related works by run-
ning simulations on increasing cache size with actual trace data. Nonetheless, while
the better performance in previous approaches against LRU-based policies is due
to their capacity to adapt to data access patterns, we argue that in our setting
LRU itself has its own ability to adjust to data locality and we rather enhance this
attitude by supplementing the eviction mechanism with the knowledge of future
accesses. Moreover, our work addresses a completely different problem — the CMS
dataset accesses — characterized by different data access distributions and a much
more complex feature space with respect to Web browsing.
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3 A scalable pipeline for dataset popularity prediction

Our scalable dataset popularity prediction pipeline is depicted in Fig. 1. It high-
lights the process chain, from the raw data ingestion and preparation steps up to
the ML component producing (and keeping updated) the machine learned model
which is in turn exploited by the PPC strategy driving dataset caching in the
various CMS sites.

t:> Data Przparatlon :> Dataset Popularity
Feature Extraction Learning

PPC ) -
Caching <:> Popularity Prediction

CMS Computing Infrastructure

Fig. 1 The pipeline of components implementing dataset popularity prediction and the use
of the ML model trained by the PPC strategy.

In the following we discuss in details the main components implementing the
pipeline for data preparation and training of the dataset popularity classifier.

3.1 Data preparation and feature extraction

Raw data at the LHC is organized hierarchically by time-windows called Run, a
unit of data acquisition or simulation process. A similar structure is simulated
for Montecarlo events. During each Run, either it is related to LHC collisions or
Montecarlo simulation, data is organized into sets called blocks, the smallest units
of transferable information among sites. Data consists of mostly ROOT-format [10]
Logical File Names (LFN), a site-independent name for a file. In turn, blocks are
grouped in datasets, which constitute the entry point for data analysis and data
transfers. On average, a dataset has a size of about 2 TB and includes few or
thousands of LFN.

A typical CMS dataset namespace is defined by three main parts concatenated
in a slash-separated name /primaryDataset/processedDataset/dataTier, as it is
shown in Fig. 2. However the syntax is not fully enforced and this constitutes a
problem for automated parsing tools. primaryDataset is a string that describes
either the selection process on real data or the physics simulated event types.
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processedDataset describes the processing chain that is applied and the data tak-
ing era. dataTier (or, simply, tier) describes the kind of event information stored
from each step in the processing simulation and reconstruction chain. Examples of
tiers include RAW and RECO, and for Montecarlo event, GEN, SIM or DIGI or a
combination of them. For example the GEN-SIM-DIGI-RECO dataTier includes
the generation (Montecarlo), simulation (Geant), digitalization and reconstruction
steps.

(Ceemr] [ Coompaien]
l\/leOfTuneZZstarJl4TeVI_Ipythia6HSummer1ZHUpgradePhase].I-DESIGN42 Vi7v1
\r \r

Fig. 2 Main information that can be extracted from the dataset name.

The building blocks of the dataset name constitute the first set of categorical
features that can be harnessed to run ML algorithms. Additional features are
derived by combining and aggregating on a weekly basis the dataset properties
like size or number of files, and the usage information such as number of accesses,
number of bytes read, number of users using it, CPU time spent, etc. We name
dataframe the result of this process of feature construction. This brings to the
identification of a first set of relevant attributes. They are summarized in Table 1
and represent the basic set of training features exploited by ML algorithms. A
portion of the raw data and the whole set of weekly dataset popularity samples
are publicly available® in SVMlight format in order to make results reproducible
and foster knowledge and improvement in the field. Datasets and user names are
converted into numeric values for anonymization.

3.2 Dataset popularity learning

Modeling dataset popularity represents the first contribution of this work. We
must take into account that the definition of popularity is all but unambiguous.
Informally speaking, we can say that dataset popularity quantifies the user activity.
A dataset is popular when it is used ”often” in user jobs. Understanding whether a
dataset is popular or not helps to answer to questions like what new datasets will
be accessed the most or how many replicas of them is convenient to store and where
these replicas should be located in the CMS distributed infrastructure. This would
improve the efficiency of any distributed storage system because dataset access can
be optimized creating several replicas at the sites where they are most likely to be
used.

The relationship between the features listed in Table 1 and popularity class
is primarily related to the dataset usage metrics like naccesses, cputime, nusers,
readbytes. In fact, different cutoffs applied to the values of these usage features, or to
their combinations, can lead to different definitions of popularity, with each dataset
being designated as popular or unpopular depending on whether the resulting value
is higher or lower than the cutoff.

3 github.com/mmeoni/CMS-popularity
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Table 1 Categorical and numerical training features extracted from the set of possible at-
tributes.

Type Name Description
Static features week week of aggregation
size size of a dataset, expressed in GB
nfiles number of LEN in the dataset
nblocks number of blocks in the dataset
nevents number of collisions described in the dataset
Physics domain  process group of events with related topology
energy energy at which collisions take place at LHC
generator software for events generation
campaign data reprocessing and simulated events production phase
subcampaign a subphase of a given campaign
version version of the processed data
datatier type of event information stored in the dataset
software reconstruction software
era acquisition Era
luminosity number of collisions produced in a time and space unit
Infrastructure serverdomain domain satisfying the access request
serversite server name
servercountry country the server belongs to
clientdomain domain of the client requesting the access to the dataset
clientsite physical site of the client
clientcountry country the client belongs to
username username accessing the dataset
protocol application protocol used to access the dataset
Usage features naccesses number of weekly accesses to a dataset
nusers number of weekly users accessing a dataset
cputime CPU time weekly utilized to access a dataset
readbytes weekly number of bytes read, expressed in GB
nreplicas weekly number of replicas for a dataset
nconferences number of conferences where the DS is mentioned
p(naccesses) average number of weekly accesses
o(naccesses) variance in number of weekly accesses

Since the real ratio measured from the replica catalogue at CERN is roughly
25%, it makes sense to start our studies from a realistic threshold that already
satisfies the current storage deployment. That ratio results in the cutoffs listed in
Table 2, which can be in turn used to convert the regression problem of predicting
the number of future accesses to a dataset into the related binary classification
problem of predicting if a dataset will be popular in the future.

Table 2 Popularity cutoffs. Different thresholds applied to the usage features can lead to
different definitions of popularity.

Usage feature Cutoff
naccesses 50
cputime 1h
nreplicas 1
readbytes 400 GB

Training the predictive models that will suggest what datasets become popular
over time leverages Spark and its scalable machine learning library. Spark has proved
to be very successful as an effective platform for running CMS computing analytics
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[28]. Hence, it can be used as a tool to streamline and compare different predictive
prototypes capable of gathering dataframes that organize features extracted from
several CMS data services. Scalability and fast distributed data processing are two
critical factors for current CMS data analyses; Spark offers both, together with
a simple programming abstraction through the Scala language, which in turns
provides powerful caching and persistence capabilities. This allow us to compute
dataframes in nearly real time as the raw data is being produced, with the addition
to pass them on directly to the MLIlib [26] algorithms available in Spark.

For the purpose of this work, we test a set of standard ML baseline algorithms
(Decision Tree, SVM, Logistic Regression) and two state-of-the-art algorithms
based on decision trees: Random Forest (RF) [9] and Gradient Boosted Trees
(GBT) [20]. The hyper-parameters used to train the classifiers are chosen according
to the recommendations in the MLlib developer guide*. In modern applied machine
learning, models based on tree ensembles like the ones learned using RF and GBT
algorithms almost always outperform singular decision trees or simpler models [17].
Moreover, they results to be much more robust to overfitting. RF is an ensemble
learning boosting meta-algorithm that trains a set of decision trees by exploiting
sampling with replacement on both the features and sample space. GBT instead
uses any arbitrary differentiable loss function to drive the iterative learning of new
decision trees minimizing the error due to incorrectly classified examples. Although
there is substantial variability in the performance measured across problems and
metrics from different experiments and domains, GBT performs generally better
than RF, particularly when dimensionality is low [11]. This is also evident by the
fact that GBT are the most common choice in solutions for ML competitions, such
as Kaggle’.

In binary classification, accuracy may not be the best estimator to use [35].
Guessing the more common class could in fact yield very high accuracy in pres-
ence of highly unbalanced classes. For this reason, it is usually preferable to use
different metrics that are less sensitive to imbalance when evaluating the predic-
tive performance of classifiers. Our goal is to identify the members of the positive
(rare) class successfully, the popular dataset in our study.

Thus, we consider two additional performance measures: precision, which mea-
sures the classifier exactness, recall, which measures the classifier completeness.
Because they both provide valuable information about the quality of a classifier,
they are further combined into the single general-purpose F1-score, which is de-
fined as their harmonic mean. The F1 score favors classifiers that are strong in
both precision and recall, rather than classifiers that emphasize one at the cost of
the other.

We finally combine true and false positive rates in the Receiver Operating Char-
acteristic (ROC) curve. The area under this curve represents the probability that
the classifier will rank a randomly chosen positive example higher than a randomly
chosen negative one: the larger the area under the ROC (auROC), the better the
discrimination power of the predictive model.

4
5

spark.apache.org/docs/1.5.2/mllib-classification-regression.html
www.kaggle.com/competitions
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4 Experiments

CMS dataset access logs are stored in a Hadoop File System (HDFS) and aggre-
gated on a weekly basis as described in the previous section. Section 4.1 discusses
why this aggregation period was chosen as prediction time granularity. Raw data
aggregation, training of the model and evaluation on the test set are implemented
via a scalable pipeline of Apache Spark components developed in Scala, a Java
binding of Spark. Additionally, Zeppelin is used as Web-based notebook for quick
interactive data analytics. It allows for straightforward prototyping of aggregation
and learning algorithms.

Popularity raw data on HDFS is stored in CSV, JSON, Parquet or AVRO
formats, and is available starting from March 2015. This data represents the output
of several streamers performing continuous data ingestion to the Hadoop ecosystem.
Table 3 lists the main sources of structured and unstructured data feeding feature
construction.

Table 3 Information sources used to compute the features of dataset popularity samples.

Source Items Type Description
EOS 786,934,116  structured Disk storage system at CERN
AAA 2,370,570,956  structured CMS XrootD federation for Grid data
CRAB 1,177,951  structured Grid infrastructure for job submission
DBS3 5,193,522  structured Global dataset/fileblocks catalogue
Block-Replicas 805,614,541  structured Global replica catalogue
PhEDEx 58,227,786  structured Fileblock locator and export service
CADI 1,791  semi-struct CMS conference database

The set of dataset popularity samples built from these specific sources contains
instances of both unpopular and popular dataset in the week observed. A dataset
is labeled as popular according to the cutoffs in Table 2. Specifically, each dataset
weekly sample is initially modeled by the 31 features listed in Table 1 and one
additional popularity label 0/1 that assesses the popularity of the dataset in the
week successive to the one to which the sample refer to.

We follow the process discussed in section 3.2 and compute the performance
metrics. In the tests conducted we observed that the cutoff on the number of weekly
dataset accesses (naccesses > 50) results in a better auROC than the cutoff on
other metrics such as cputime (plotted, as example, in the same figure). For this
reason, naccesses is the selected metrics for all the next experiments.

4.1 Choice of the prediction timespan

We analyzed the input dataframes to determine what time interval represents the
best timespan for dataset popularity prediction. The dataset popularity labels used
during the training are computed by exploiting the complete knowledge available
in the actual historical data. Our classification task asks in fact to predict if a
given dataset will be popular in the next future. Since the historical data gives
us a complete knowledge of what happened in the past, we use this knowledge
as an oracle for building a large set of training samples. A training sample has
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Receiver Operating Characteristic

True Positive Rate

R — #accesses > 50 (AUC = 0.96)
L CPU time > 1hh (AUC = 0.94)
0.0k”
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 3 ROC of the popularity classifier with different cutoffs (50 accesses or 1 hour CPU
time).

the form < id,t, f1, f2,..., fn,Y >, where id is the identifier of the dataset, t is
the discrete time at which the features fi,..., fn, refer to, and Y is the binary
popularity label indicating if dataset id will be popular or not at time ¢ + 1. Note
that we produce several samples for each dataset, one for each pair of time intervals
(t,t+1) covered by our historical data. The value of label Y for dataset id at time
t will be 0 (unpopular) when the number of accesses to id at time ¢ + 1 is lower
than the threshold, 1 (popular) otherwise.

Thereinafter we consider a single week as the timespan for our popularity
prediction problem. We choose a weekly timespan justified by the empirical obser-
vation that when the temporal window in the training set is increased for example
to 3 weeks (i.e., dataset popularity in week; o predicted using the features com-
puted from data collected in week; and week; 1), the number of positive samples
decreases remarkably and prediction accuracy decreases.

The two upper plots in Fig. 4 display the number of datasets that have been
accessed in 2 and 3 consecutive weeks, while the two distributions in the bottom of
the figure show the total number of weeks each dataset is accessed and the number
of consecutive weeks each dataset is accessed. From these plots we see that most
datasets have a relatively short access pattern and increasing the timespan does
not allow to capture their dynamics.

Table 4 Characteristics of the dataset used for training and testing.

Number of samples 307,025
Positive samples (popular datasets) 68,661
Negative samples (unpopular datasets) 238,364
Number of different datasets 47,775
Number of different CMS sites 63
Number of different CMS tiers 25

Timespan (in weeks) 105
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Fig. 4 Number of dataset accesses vs. number of total and consecutive weeks and number of
accesses in 2 and 3 consecutive weeks.

Table 4 details the characteristics of the dataset used for learning and assessing
the classifiers for dataset popularity. In this dataset each sample is initially repre-
sented by the 31 features of Table 1. In the following we will show how additional
features are introduced to enhance prediction accuracy.

4.2 Prediction performance

Table 5 summarizes the performance of models learned with different ML algo-
rithms when the cutoff naccesses > 50 is used to establish the popularity label for
the week successive to the one when the features in each sample are computed.
The feature set from Table 1 is applied to all models. Models are trained using
Spark MLIib machine learning algorithms on more than 300k samples derived from
dataset accesses in 2015 and 2016. The measures of the tests’ accuracy are used
as baseline for a series of enhancements that will be discussed in Sect. 4.3.

Table 5 Performance of various classifiers for naccesses > 50

Classifier auROC Accuracy Precision Recall F1

Decision Tree 0.647 0.743 0.737 0.742 0.740
SVM 0.660 0.740 0.719 0.743 0.716
Logistic Regression 0.645 0.720 0.698 0.717 0.650
Random Forest 0.744 0.758 0.782 0.757 0.769

GBT 0.773 0.769 0.792 0.770 0.781
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The ensemble methods in our setup confirm to be more precise than base
models. Consistently with the literature, Random Forest and GBT models result
to significantly outperform Decision Tree, SVM, and Logistic Regression models
learned on the same data.

4.3 Enhancement of the prediction model

In the following we discuss how the prediction performance reported in Table 5
can be improved by further cleaning the data and introducing additional features.
The strategies tested for improving the performance of our best classifier (GBT)
are described below:

— Removal of Unpopular Tiers (RUT). As already described, LHC event in-
formation from each step in the simulation and reconstruction chain is logically
grouped into what is called a tier. Fig. 5 shows the popularity distribution of
the 25 tiers defined. Among these 25 total types, only the 12 of them that are
more used and more important from the physics point of view are retained in
the dataset. The tiers filtered out are the ones associated to testing jobs and
the ones that are utilized in a short timespan. This filtering produces a cleaner
training set and improves the precision of the model and the F1 score by 4-5%
as shown in the row labeled GBTryr of Table 6.
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Fig. 5 Tier popularity distribution.

— Rank-based features (RBF). The analysis of the distribution of numerical
features such as cputime, naccesses or readbytes, shows how their range is sub-
jected to significant fluctuations. For examples, the number of weekly accesses
to a dataset can vary from few units to tens of thousands. Even larger is the
range involving the total number of read bytes: while a Montecarlo simulation
job is mostly CPU bound, an analysis job can perform a large amount of reads.
No matter what the measure is, usually there exist a small amount of values
that can be seen as ”outliers”, while the values above the popularity threshold
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are affected by scattering. In order to reduce variance we sort the numerical
features in all the samples by increasing values and substitute in each sample
the real feature value with its rank in the global order [25]. While low values
do not incur in remarkable transformation, the scattered instances occurring
for high and rare values become compacted. The introduction of rank-based
features has the advantage of further improving the classification accuracy as
shown in the row labeled GBTryr+rpr of Table 6.

— Daily-trend features (DTF). The feature set is extended with the number
of accesses on each weekday and, for each day, a (-1,41) column is added to
indicate whether the number of accesses decreases or increases with respect
to the previous day. Furthermore, also average and variance of the number of
accesses within each week is computed. Consequently, the number of numeric
features in the dataset is more than doubled. The introduction of daily trends
among the features results in a significant improvement of the predictive power
of the classifier which reaches a precision above 0.88 as shown in the row labeled
GBTRUT+RBF+DTF of Table 6.

Table 6 Incremental improvements of classifier performance achieved exploiting RUT, RBF,
and DTF strategies.

Classifier Precision Recall F1

GBT 0.792 0.770 0.781
GBTRruT 0.820 0.842 0.831
GBTRUT+RBF 0.836 0.848 0.842
GBTruT+RBF+DTF 0.881 0.870 0.875

4.4 Site-level models

Since the CMS infrastructure is distributed we assess here the opportunity of train-
ing a specific classifier per each site. In fact, some locality could exist in dataset
accesses that make some items most frequently accessed from some sites rather
than others. Similarly, there may exist certain combinations of Primary Dataset
or Era description in the dataset full name (see Fig. 2) that are more frequent
for specific sites. Table 7 shows the performance achieved by single-site classifiers
learned from the samples referred to 6 specific sites of the CMS infrastructure.
These 6 sites were chosen by first grouping the CMS sites in three groups on the
basis of the number of weekly samples recorded in the training dataset: more than
30k samples, between 30k and 10k samples, and less than 10k samples. Then, two
sites from each one of these groups were randomly chosen. This strategy allows
us to have a small set of sites that can be considered representative of the large
diversity among the CMS sites.

By looking at the figures reported in Table 7 we can note that the variance in
the number of training samples results in different precision and recall values of
the resulting local models. Small sites having a low number of samples lead to poor
classifier performance. These results do not show a clear advantage of adopting a
local model instead of a global one learned on the samples from all the sites.
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Table 7 Performance of local, site-level models and the global one.

Site Samples Precision Recall F1
All Sites 296,360 0.881 0.870 0.875
hep.wisc.edu 30,487 0.845 0.843 0.844
datagrid.cea.fr 4,955 0.857 0.714 0.779
unl.edu 31,021 0.870 0.862 0.866
in2p3.fr 27,123 0.968 0.945 0.956
cr.cnaf.infn.it 16,394 0.900 0.833 0.865
pi.infn.it 4,945 0.901 0.801 0.847

The figures in the table point out that only the local classifier at the in2p3.fr
site outperforms the global model, with an impressive recall of 0.945 when the
local model is scored on the local test set. This is however not due to a better
performance of the local model on this site, but rather to its particular (and easier
to forecast) distribution of accesses. In fact, on a separate test we also scored the
global model on the same local test set and obtained a recall of 0.943, far higher
than the average recall of the global model (i.e., 0.870).

4.5 Seen and Unseen datasets

In this section we assess the performance of our prediction model to classify the
popularity of new in contrast with previously seen datasets. The traces of dataset
accesses available allow us to extract a vast range of usage features convenient
to extend the learning power of the predictors for existing datasets. However,
datasets never accessed in the past obviously miss these usage features. We are
thus interested to understand if our classifier can learn how to use static and
physics-domain features only, or, conversely, at what extent the lack of usage
features jeopardizes its ability to accurately predict popularity.

The 320k samples represented in our training set refer to about 50k different
datasets. In order to answer the above research question we included an additional
set of 50k samples, one for each dataset. Each new sample refers to the week before
the first access to the specific dataset and is labeled on the basis of the popularity
of the dataset in the subsequent week. All usage attributes are set to zero in
these samples since no access to the corresponding dataset was actually performed.
Another approach in literature addresses the same issue by enriching the set of
samples with a number of rows randomly obtained from a global catalogue service
[7]. Since this approach may introduce samples also for datasets that will never be
accessed, and might hinder the exploitation by the classifier of dataset seasonality,
we preferred to adopt a different solution that better model the reality.

Table 8 reports precision, recall and F1 score measured in the classification
of new and old datasets. New refers to the newly introduced datasets, only de-
scribed by static and physics-domain features. Conversely, 01d refers instead to
the datasets for which usage features are available, i.e., the dataset samples con-
sidered in all the previous experiments (see Table 6). The experimental results
confirm the relevance of the usage features in predicting dataset popularity, since
all classification measures are higher for the 01d datasets. Nevertheless, the per-
formance loss in the classification of new datasets is relatively small, hence the
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static features related to the physics domain encapsulate enough knowledge to be
successfully exploited by the classifier.

Table 8 Classification performance on new and old datasets.

Datasets Precision Recall F1
New 0.836 0.848 0.842
014 0.881 0.870 0.875

4.6 Model aging and refreshing

The models learned to predict dataset popularity discussed so far are static. They
are in fact trained on a static dataset extracted from the CMS access logs recorded
in one year and tested on a test set obtained from the accesses recorded in the
first weeks of the following years. The drawback of this approach is that access
patterns and dataset characteristics could change over time. This change could give
rise to an overall aging of the prediction model learned. Model aging is commonly
observed in different application scenarios (e.g., [3]). To face up model aging it is
necessary to re-train the model as new access patterns acquire popularity. Different
strategies to keep the model updated can be adopted. The first decision to make
is the minimum number of observations required to train the model. This may be
thought of as the initial window. Starting at the beginning of the time series, March
2015, the static model discussed is trained using 297,086 samples throughout end
of 2016. The model obtained is then used to predict dataset popularity for the
next time step, e.g., the first week of 2017. After this time we have at disposal new
information for updating the model, e.g., all the dataset accesses logged during
the first week of 2017. This data can be used to refresh the model and obtain more
accurate prediction for the following week, e.g., the second week of 2017. Second,
we need to decide whether the new model has to be trained on all data available
or only on the most recent observations. This determines whether an expanding
window, reinforced to include the new weeks, or sliding window, for moving along
the time series, is used.

The aging of the static model is demonstrated in the plot reported in Fig.
6, where weekly test sets obtained from the accesses in 2016 and 2017 (61 total
weeks) are used to score the classifier trained on all 2015’s samples. As we can see
from the plot the accuracy tends to decrease as the time gap between the training
dataset and the test sets increases.

In order to address such model aging issue, we deployed and assessed two
different techniques to update and keep fresh the prediction model:

— A reinforcement approach, where the training set used to build the prediction
model is weekly extended with new samples from the previous week, and a fresh
model trained from the reinforced dataset;

— asliding-window approach, where the training set used to build the prediction
model is weekly updated by substituting the samples from the oldest week with
the samples of the previous week. Again a new model is trained weekly from
this updated dataset that maintains its time-coverage constant over time.
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Fig. 6 Demonstration of aging of the static model.
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Fig. 7 Comparison between different model update techniques.

The plot in Fig. 7 shows the effectiveness of the two model refreshing tech-
niques. The accuracy of the static and the two model update techniques are com-
pared on the first 9 weeks of year 2016. The static model results to perform worst
because of the aging effect. On the other hand, the sliding-window model performs
constantly better than the reinforced model. This is likely to be due to the noise
introduced in the model by the older samples that, according to the reinforced
approach, are always maintained in the dataset. We note however that the aging
effect is quite slow to manifest. From Fig. 7 we note a maximal loss in accuracy of
about 5% after 9 weeks. The relatively small degradation in such a quite long time
period does not justify the adoption of complex streaming approaches to address
concept drift in the classification task [1]. Furthermore, similar approaches rely
on the continuous update of features that is not possible in our system where the
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values of dynamic usage features are the result of aggregation jobs performed daily
or weekly.

5 Dataset caching

The CMS computing model is based on the Worldwide LHC Computing Grid
(WLCG) hierarchical tier structure compounding over hundreds of computing
sites. The CERN IT centre represents the WLCG Tier-0 site. 14 worldwide large
computing centres with thousands of CPUs, PB of disk storage, tape storage sys-
tems and 24/7 Grid support service are referred as Tier-1 centres. Tier-1 centres
make data available to hundreds of Tier-2 sites, regional centres for specific anal-
ysis tasks.

The CMS sites store datasets locally in order to minimize the network traffic
when they are accessed by HEP data-intensive analysis jobs. The current site
replacement policy follows the LRU) policy to select which element is evicted when
a site is full and a new dataset is needed. LRU exploits the temporal locality of
dataset, which we have demonstrated to be characterized by a relatively short
access pattern (see Section 4.1).

We aim at enhancing LRU policy with additional knowledge of the dataset
access patterns. Therefore we test the Static Dynamic Cache (SDC) [19], which
harnesses access frequency, and we also define a novel approach to data caching
called Popularity Prediction Cache (PPC), which instead relies on the knowledge
of DS popularity in the next week. We demonstrate that PPC offers a big edge
over both LRU and SDC.

SDC has proven very effective for caching search engine query results and out-
performs LRU. It stores the result of most frequently submitted queries in a static
portion of the cache, while the remaining portion of the cache manages query re-
sults with the LRU eviction policy. The experiments always start from an initial
warm cache with the static portion fixed in size and refreshed periodically. Like-
wise, we run SDC pre-initializing the static portion of each cache with the datasets
most frequently accessed from the starting of the simulation up to the current
week. The size of the static portion is 25% of the entire cache. This portion is
refreshed every 1,000 misses to compensate the degradation of the hit rate. The
refresh operation is considered zero-cost with respect to the misses count.

PPC leverages the outcomes from the popularity classifier. The dataset eviction
policy is driven by the popularity predictions. Specifically, when choosing which
dataset to evict PPC behaves like a standard LRU acting on unpopular datasets
only. In fact, it harnesses the knowledge of dataset popularity in the next week and
if a given dataset according to LRU would be selected for eviction but is classified
as popular by the prediction model, it is maintained in the cache. Hence, only
unpopular least recently used datasets are the candidates to be evicted from the
cache. False positive misclassifications may lead to extra disk space overhead, while
false negatives may involve longer latencies of user jobs. In terms of numerical
examples, 1% in false positive rate on 500 datasets of 2 TB average size would
cause 10 TB of extra transfer.

PPC, SDC and LRU performance are assessed by comparing the hit rate for in-
creasing sizes of the caches. The experiment reproduces all dataset access requests
throughout 2015 at the 6 most accessed CMS sites. We always perform a cold start
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of the cache at each site, thus generating a number of compulsory cache misses
corresponding to the first reference to each distinct dataset. The analysis of the
distributions of popular datasets over time (see Fig. 4) outlines different kinds of
locality in the dataset access requests. Namely, some datasets are popular only
within relatively short time intervals, or they may become suddenly popular due
to proximity to some paper submission deadlines.

Site statistics for the 6 most used CMS Grid sites are detailed in Table 9. The
table shows the number of datasets (N), the popular ones (and their percentage),
the number of total accesses (in millions), the number of compulsory misses (M)
and the maximal hit rate (Hmax), computed as

M.
Hmax =1—-—.
N

Note that Hmax represents that best hit rate value that any caching strategy can
reach.

Table 9 Statistics of the 6 most accessed sites.

Site N Popular (%) Accesses Mc Hmax
datagrid.cea.fr 3,338 648 (19.4) 1.66 M 1,504 0.55
desy.de 3,639 603 (16.6) 0.86 M 1,069 0.71
fnal.gov 4,528 1,581 (34.9) 4.72 M 735  0.84
hep.wisc.edu 16,131 4,278 (26.5) 7798 M 5817 0.64
jinr-til.ru 4,089 798 (19.5) 1.64 M 1,341 0.67
Inl.infn.it 5,601 1,034 (18.5) 1.44 M 1,552 0.72

Table 10 Hit rate comparison of dataset caching among LRU, SDC and PPC.

Site Policy 100 200 400 800 Hpax

LRU 0.26 045 050  0.52
datagrid.cea.fr PPC 0.31 0.46 0.50 0.52 0.55
SDC 0.30 0.45 0.52 0.54

LRU 0.03 0.29 0.64 0.70
desy.de PPC 0.12 0.36 0.65 0.70 0.71
SDC 0.10 0.33 0.64 0.70

LRU 0.23 051 072 0.84
fnal.gov PPC 0.39 056 0.73 0.84 0.84
SDC 0.25 0.52 0.73 0.84

LRU 0.00 0.05 029 0.45
hep.wisc.edu PPC 0.19 0.20 0.35 0.46 0.64
SDC 0.04 0.10 024 045

LRU 0.20 0.55 0.64 0.66
jinr-ti.ru PPC 0.28 0.56 0.64 0.66 0.67
SDC 0.25 0.54 0.65 0.66

LRU 0.11 0.55 0.67 0.69
Inl.infn.it PPC 0.21 0.55 0.67 0.69 0.72
SDC 0.16 0.53 0.67 0.71
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10 reports the hit rates for different cache sizes and different caching strategies
at the 6 most used CMS sites. From the table it is clear that PPC outperforms both
LRU and SDC for small cache sizes. For example, for the site with most dataset,
e.g., hep.wisc.edu, PPC obtains a hit rate of 19% using a very small cache fitting
only 100 datasets, versus a 4% hit rate for SDC and a practically 0% hit rate
for LRU. Similar benefits, slightly reduced, are obtained with cache sizes of 200
datasets. Hence, PPC is the best policy when the cache size is limited, which makes
it very effective in production sites with limited storage or bandwidth. Increasing
the cache size makes the PPC strategy less competitive w.r.t. SDC and LRU, mostly
because all the strategies perform quite similarly when approaching the maximal
hit rate Hmax-

The performance of the LRU, SDC and PPC caching strategies can be further
compared simulating the most efficient caching algorithm, which always evicts
the dataset that will not be needed for the longest time in the future. This op-
timal result is referred to as Bélddy’s algorithm (OPT) [6]. Since it is generally
impossible to predict how far in the future a dataset will be needed, this is not
implementable in practice. The OPT hit rate can be calculated only using his-
torical data to compare the effectiveness of the actually chosen cache algorithms
with respect to the theoretical optimum. We further compare the performance of
the PPC caching strategy with the trained classifier w.r.t. the PPC strategy using
the optimal popularity predictors, i.e., the popularity oracle with 100% accuracy
(PPC™).

The comparison of results for the hep.wisc.edu site is shown in Fig. 8. It shows
the hit rate performance of PPC w.r.t. LRU and SDC for small cache sizes reported
in Table 10. Moreover the differences between the hit rates of the trained PPC
strategy and the oracle PPC* strategy are very small (less than 0.02 for cache size
100 and 0.05 for cache sizes 200—300), confirming the benefits of the high accuracy
predictors in popularity caching.

s
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Fig. 8 Simulation on historical data of the caching algorithms, including the theoretical op-
timal (OPT) and the 100% accurate classifier (PPC*).
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After assessing the performance of PPC with respect to LRU and SDC on a
large historical collection of dataset accesses, we investigate the performance of an
actual deployment of PPC. Hence, we use the previous data to warm up the cache
and we evaluate the performance of PPC on a new week of access log data, as
shown in Fig. 9. Also with warm caches and actual data, the performance of PPC
are close to the oracle PPC* strategy, with even smaller differences for cache size
100 — 400. We do not report graphs on LRU/SDC performance achieved on other
CMS sites since all the experiments conducted confirm the best performance of
PPC.
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Fig. 9 Hit rate difference between optimal and real classifier is negligible when using cache
warm start.

6 Conclusions

This work addresses dataset popularity prediction and dataset caching at the CMS
experiment at CERN. It harnesses the historical usage data recorded by the large
computing infrastructure in CMS as a rich source of information for system tuning
and capacity planning.

We investigate how to leverage scalable machine learning on this huge amount
of data. We analyzed the accesses to the CMS datasets recorded by the CMS
monitoring system and discover patterns and correlations useful to enhance the
overall efficiency of the distributed infrastructure.

In particular, we implement a scalable pipeline of Spark components whose goal
is collecting from different sites the dataset access logs, organizing them into weekly
snapshots, and training, on these snapshots, predictive models able to accurately
forecast which datasets will become popular over time. The F1 measure of the best
performing model is 0.875, which indicates an accurate ability to correctly classify
popular datasets from unpopular ones.

The accurate predictions computed and kept fresh by the proposed pipeline of
scalable Spark components running on the CMS Hadoop cluster are then exploited
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at each CMS site by a novel data caching policy, called Popularity Prediction
Caching (PPC). We evaluate the performance of PPC against popular caching
policy baselines like LRU and its variations. The experiments conducted on large
traces of real dataset accesses show that PPC outperforms LRU and it increases the
number of cache hits up to 20% at some sites. Notably, PPC results in being the best
caching policy with limited cache size, which makes it very effective in production
sites with limited storage or bandwidth. This result is particularly important for
the efficiency of the CMS Grid infrastructure since it allows to deploy an effective
data placement policy creating replicas of datasets at the sites where they are most
likely to be used. Enhancing the CMS data placement policy involves a significant
improvement of resource usage and a consequent reduction of the large cost of this
important infrastructure.

In general, caching strategies can be evaluated using different metrics, and hit
rate is the most common. However, very few works take into account the cost of
misses when evaluating the performance of caching strategies and propose cost-
aware caching strategies. As a future work, we will develop network transfer and
financial cost models, taking into account the dataset transfer cost as well as
the electricity prices when computing the cost, and we will evaluate cost-aware
caching eviction policies, which takes into account both transfer time and costs
(e.g., energy expenditure to transfer dataset).
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