
Int. J. High Performance Computing and Networking, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

MIDAS: a cloud platform for SOA testing as a
service

Alberto De Francesco
Istituto di Scienza e Tecnologie dell’Informazione – CNR,
Via G. Moruzzi, 1, 56124, Pisa, Italy
and
IMT – Istituto di Studi Avanzati di Lucca,
Piazza S. Francesco, 19, 55100, Lucca, Italy
Email: alberto.defrancesco@isti.cnr.it

Claudia Di Napoli* and Maurizio Giordano
Istituto di Calcolo e Reti ad Alte Prestazioni – CNR,
Via Pietro Castellino, 111, 80131, Napoli, Italy
Email: claudia.dinapoli@cnr.it
Email: maurizio.giordano@cnr.it
*Corresponding author

Giuseppe Ottaviano, Raffaele Perego and
Nicola Tonellotto
Istituto di Scienza e Tecnologie dell’Informazione – CNR,
Via G. Moruzzi, 1, 56124, Pisa, Italy
Email: giuseppe.ottaviano@isti.cnr.it
Email: raffaele.perego@isti.cnr.it
Email: nicola.tonellotto@isti.cnr.it

Abstract: The increasing adoption of the service-oriented architecture approach makes software
quality more challenging since traditional approaches for software testing are inadequate for
SOA-based applications. The MIDAS platform is an integrated platform for SOA testing
automation, designed and architected according to the SOA computing paradigm, and deployed
on a public cloud infrastructure to tackle the variability in the computational resources necessary
for testing SOA applications. It is available to end users as a testing as a service on a
self-provisioning, pay-per-use, elastic basis. The cloud-based software architecture envisioned
for the MIDAS platform and the strategies adopted for both its development, and its deployment
on the target cloud infrastructure are here discussed, together with the solution designed and
implemented in order to monitor the usage of MIDAS services and resources. Also, the strategy
adopted to provide the MIDAS platform with the management of elastic resources is outlined.

Keywords: cloud computing; Amazon AWS; service-oriented architecture; SOA; software
testing.

Reference to this paper should be made as follows: De Francesco, A., Di Napoli, C.,
Giordano, M., Ottaviano, G., Perego, R. and Tonellotto, N. (xxxx) ‘MIDAS: a cloud platform for
SOA testing as a service’, Int. J. High Performance Computing and Networking, Vol. X, No. Y,
pp.xxx–xxx.

Biographical notes: Alberto De Francesco received his Master degree in Telecommunication
Engineering from the University of Pisa in 2010. He is a PhD student at IMT Lucca, and has
been a research fellow at ISTI-CNR since 2012. His main research interests concern cloud
computing, and web and microblogging information retrieval.

Claudia Di Napoli is a researcher at the High Performance Computing and Network Institute of
CNR. She received her degree in Physics (with specialisation in cybernetics) from the University
of Naples in 1992. Her research interests include service-oriented architectures, cloud computing,
software agents, and automated negotiation.

Maurizio Giordano is a Research Scientist at the High Performance Computing and Network
Institute of Italian CNR. He received his degree in Physics (specialisation in cybernetics). He is a
Lecturer at the Computer Science Faculty of University of Naples. His research interests are high
performance and cloud computing, SOA, and artificial neural networks.

2 A. De Francesco et al.

Giuseppe Ottaviano has been a postdoc researcher at ISTI-CNR since 2013. He received his PhD
in Computer Science from the University of Pisa in 2013. His main research interests include
machine learning, cloud computing, information retrieval, and search engines.

Raffaele Perego is a senior researcher at ISTI-CNR, where he leads the HPC Laboratory. His
research interests include HPC, web information retrieval, and data mining, with particular
emphasis on efficiency issues of web search. He has co-authored over 120 papers on these topics
published in journals and in proceedings of international conferences.

Nicola Tonellotto received his PhD in Information Engineering from the University of Pisa and
in Computer Engineering from the Technical University of Dortmund in 2008. He has been a
researcher at ISTI-CNR since 2006, and has been a Contract Professor at the Computer Science
Department of the University of Pisa since 2009. His main research interests include cloud
computing and web information retrieval.

This paper is a revised and expanded version of a paper entitled ‘A SOA testing platform on the
cloud: the MIDAS experience’ presented at Cloud Interoperability and Federation Workshop in
conjunction with the 2014 International Conference on Intelligent Networking and Collaborative
Systems, Salerno, 10–12 September 2014.

1 Introduction

The service-oriented architecture (SOA) paradigm
(Papazoglou and van den Heuvel 2004) supports the
development of applications resulting from the integration
of new and pre-existing components, aka services, in a
business workflow. SOA services are loosely-coupled,
discoverable, reusable, inter-operable and platform-agnostic
components, implemented according to well-defined
standards of the web service technology (Alonso et al.,
2004). They can be described, published, categorised,
discovered and dynamically assembled, bound or unbound
at any time and as needed.

The key characteristics of SOA-based applications are
posing new challenges to software testing since
conventional testing methodologies are inadequate to cover
SOA testing requirements (Kalamegam and Godandapani,
2012). In particular, the lack of observable behaviour of the
involved systems, the lack of trust in the employed
engineering methods, and the lack of direct control of the
implementation life-cycles, make SOA testing a heavy,
complex, challenging and expensive task. There are also
additional factors that make SOA testing harder such as: the
late binding of the systems, the fundamental uncertainty of
test verdicts, the organisational complexity, and the elastic
demand of computational resources (Canfora and Di Penta,
2009). Some solutions have been proposed to address these
challenges, but still far from exploiting the full potential
benefits of SOA testing (Dustdar and Haslinger, 2004).

In this context, the European FP7 Project MIDAS
(http://midas-project.eu) aims at designing and building an
integrated platform for SOA testing automation, itself
designed and architected according to the SOA computing
paradigm. It provides facilities for black-box testing
of single services and grey-box testing of their interactions.
This platform will be made available on demand
to end-users as a software system providing advanced and
off-the-shelf testing methods and capabilities as a service to
be paid-per-use in the digital economy era. The MIDAS

TaaS is designed as a cloud-based application, deployed on
a public cloud infrastructure. From the end-user perspective
it will be made accessible over the internet as a
multi-tenancy software as a service (SaaS), we refer to as a
SOA testing as a service (SOA TaaS).

The rest of the paper is organised as follows: Section 2
describes the main features of the MIDAS cloud platform
for SOA testing, and its design; Section 3 discusses why
several testing software vendors/providers are moving to the
cloud, together with the main MIDAS requirements that
drove the choice of the underlying cloud infrastructure;
Section 4 describes both the development and the
deployment strategies for MIDAS, together with the
environment set up to develop the MIDAS platform
components; Section 5 describes the monitoring solution
implemented to account for the MIDAS resources and
services usage; Section 6 reports the approach followed to
design the elasticity facility planned for MIDAS. Finally,
Section 8 reports some concluding remarks.

2 MIDAS: a platform for automated SOA testing

The MIDAS project aims at designing and building a
platform intended as a facility for SOA testing automation
providing support for all testing activities:

• test case generation for the functional, interaction,
security and quality of service aspects of a service
architecture

• test run execution, allowing the automatic configuration
and initialisation of test scenarios and the automated
execution of test runs on a service architectures under
test (SAUTs), residing outside the MIDAS platform

• test run evaluation planning and scheduling, providing
intelligent methods and tools for the evaluation of test
results and for the planning and scheduling of test
campaigns.

 MIDAS: a cloud platform for SOA testing as a service 3

The functional testing on a SOA application will determine
the accuracy of a services orchestration. Security
testing determines whether the SAUT protects data and
maintains functionality as intended, relying on model-based
fuzzing. The basic concepts covered by security testing
are confidentiality, integrity, authentication, availability,
authorisation, and non-repudiation. The usage-based testing
within MIDAS is intended to augment the functional and
security testing, by using a stochastic model of the SAUT to
generate test cases.

The generation of test cases for functional and
interaction testing, security testing, and usage-based testing
is model-driven (Grabowski et al., 2003). Test cases are
expressed in TTCN-3 languages (Grabowski et al., 2003),
while the relative SAUT is described by an UTP/UML
model (OMG, http://utp.omg.org) or a WS-* model.

The MIDAS platform is developed incrementally, and
its functionality will be tested on two real-word use case
pilots defined and implemented as SOA applications within
the project: a healthcare services pilot for the management
of patients affected by chronic diseases, and a GS1 logistic
interoperability model supply chain pilot.

2.1 The MIDAS users

MIDAS TaaS has four classes of users, each one playing
different roles in interacting with the platform, as reported
in Figure 1.

• End users: they include both users responsible for
planning, designing, and conducting test campaigns on
service architectures (also known as testers), and users
responsible for the creation, administration, and
deployment of the service architecture under test
(also known as testees).

• Test method developers: they consist of users
responsible for designing and implementing test
methods to be used for conducting test campaigns.

• Administrators: they are users responsible for managing
both the identification and authentication of end users
and test method developers, and the MIDAS TaaS
facilities used by the administered users, including the
accounting and billing of these facilities.

• TaaS administrator: it is the responsible entity for the
entire TaaS platform, and for managing any interaction
with the cloud provider selected for the MIDAS TaaS
development and operation. As such, the TaaS
administrator is responsible for the dynamic
provisioning of all MIDAS public functionalities and
for configuring the underlying cloud resources and
services for the MIDAS TaaS users.

End users and test method developers are grouped in logical
entities called respectively tenancies and labs that are
separated user computing spaces managed by the
corresponding administrators. Conceptually tenancies and
labs represent units of:

a users identification and authentication

b cloud resources allocation, accounting and billing

c data and services ownership and access.

According to the project plan, only tenancies are included in
the basic MIDAS platform on the cloud, since test method
developers are the MIDAS technical partners in charge of
developing test methods, and they directly contribute to the
development of the platform itself. In fact, the test methods
are integrated into the MIDAS platform, so becoming part
of the complete platform deployed on the cloud, and
updated, at each version increment, with the latest release of
its components, as it will be detailed later on.

Each tenancy must be able to deal with its own cloud
users, cloud resources, data and services in a private,
sandboxed way. The MIDAS platform will contain several
tenancies, each one composed of several end users. Each
tenancy is managed by a tenancy administrator that interacts
with the respective users, and it is responsible for creating
user accounts and credentials for them.

2.2 The MIDAS SOA design

The MIDAS platform has been designed according to the
SOA paradigm, so all its functionalities are exposed as
services. The MIDAS services, also referred to as MIDAS
components, are asynchronous and stateless web services
accessed through well-defined APIs and communicating
with each other. The APIs of such web services have been
designed and implemented during the first phase of the
MIDAS project, so all services are developed according to
their specifications.

The MIDAS services are grouped in: tenancy admin
services, end users services and core services, as shown in
Figure 2.

The tenancy admin services are:

1 identification and authentication service (I&A service),
that allows tenancy administrators to create and delete
tenancy end users, as well as to list current members of
a tenancy, and to verify that each member of a tenancy
is authenticated before invoking the facilities of that
tenancy

2 accounting and billing service (A&B service), that
allows tenancy administrators to monitor the MIDAS
cloud resources and services usage of a tenancy, and to
get the corresponding updated and consolidated billing
information.

4 A. De Francesco et al.

Figure 1 The MIDAS users and their relationships

Figure 2 The MIDAS SOA design

The end users services are:

1 test gen and run service, that allows to asynchronously
start the execution of a test task (either a test generation
or a test execution task), and to actively poll it to
inspect the status and the resulting output of any started
test task

2 test method query service, that allows end users to list
the test methods currently part of the MIDAS portfolio,
and to retrieve the properties of any method in the
portfolio

3 file management service, that allows end users to access
the file system private to the tenancy they belong to,
and to perform the usual operations supported by a file
system.

The core services, organised in two levels (as shown in
Figure 2), are:

1 test generation service, that is responsible for
automatically generating test cases, test scripts and
model transformations for testing

2 test run service, that coordinates the run of a specific
test cycle, consisting in an optional scheduling phase, a
mandatory execution phase, and an optional arbitration
phase.

3 The cloud for software testing

There is a growing trend to deploy testing tools on cloud
infrastructures, either public or private, in order to provide
testing services through the coordinated use of cloud
resources according to a pay-per-use business policy. This is
due to several reasons. Software testing is seen as a
necessary evil since it takes a large amount of human and
dedicated infrastructure resources, although it is only one
stage of the software development and maintenance
lifecycle. Furthermore, business applications are becoming
more and more dynamic, complex and distributed, so
requiring increasingly sophisticated testing techniques and
methods to deal with this complexity. In addition, for a
growing number of companies maintaining in-house testing

 MIDAS: a cloud platform for SOA testing as a service 5

facilities that can mimic real operating environments is
becoming prohibitive due to the high cost and technical
difficulties, so the demand for new solutions where the
testing process is outsourced and possibly automated is
rapidly increasing.

The primary benefit of migrating software testing to the
cloud is the cost: small and medium companies that cannot
afford high capital expenditures in testing activities, can use
cloud-based testing solutions in a pay-per-use manner,
without spending money for acquiring and maintaining
hardware facilities. The problem of having an in-house
testing environment is that you have to

1 maintain it

2 buy and maintain hardware for it

3 re-purpose it for your target testing tasks

4 care about testing software/tools licenses.

An on-premise testing framework is thus a direct cost for
companies. By using testing facilities provided as a
cloud-based solution, it is possible to get rid of the
hardware infrastructure and of commercial testing tools
licenses, to streamline maintenance and to reduce
repurposing efforts.

Beyond the cost there is more to cloud-based
testing than expense savings. Several studies demonstrated
that a high percentage of defecting testing activities
is due to inaccurate test configurations and environments.
Cloud-based testing service providers often offer a
standardised infrastructure and pre-configured testing
software images that are capable of reducing such errors
considerably. This standardisation is achieved through the
use of a testing software catalogue, which pushes tester
users to learn a discipline of using a ‘library of pre-
configured and stable testing methods’ and a commitment to
meeting shared interfaces and configurations of testing
environments. All these actions result in the faster
provisioning of test environments and the ability to meet
operational objectives. In conclusion, the possibility to test
in the cloud leverage the cloud computing infrastructure
reducing the cost of computing, while increasing testing
effectiveness.

In order to set up the cloud computing resources needed
to deploy the basic MIDAS platform on the cloud, the
MIDAS TaaS administrator has to sign an agreement with
the cloud provider reporting the pay-per-use computing
resources that need to be allocated, their localisation
(e.g., located in Europe), and other terms and conditions
concerning their use. In addition, before a MIDAS tenancy
is initialised, a service level agreement between the tenancy
administrator and the TaaS administrator should be
established defining terms and conditions on the use of
cloud resources devoted to the specific tenancy together
with additional requirements, e.g., security regulations,
elastic resources demands, and so on.

3.1 Scalability requirements for MIDAS

The use of a cloud as the underlying computing
infrastructure allows to address the scalability requirements
of the MIDAS platform. In particular, the identified cloud
resource scalability dimensions for MIDAS are:

• Tenancy/lab space scalability. Cloud resources are
allocated to a tenancy/lab upon its creation, according
to the agreement established with the MIDAS TaaS
admin. In fact, the amount of allocated cloud resources
is agreed according to an SLA between the MIDAS
TaaS admin and the customer tenancy/lab
administrator. Each time a new tenancy is
created/allocated a new pool of cloud resources is
assigned to it. Accordingly, upon tenancy/lab deletion
all the currently associated cloud resource space has to
be removed, that is all the virtual machine images
(VMIs) hosting the MIDAS services have to be
detached from the pool of allocated VMIs to be
available as free resources for MIDAS TaaS.

• Computing elasticity. Inside a tenancy/lab space,
initially allocated resources can scale up/down
according to the current usage of the tenancy
computing resources: when new resources are
necessary, either because the number of registered users
in a tenancy increases, or because end users testing
activities increase, the cloud autoscaling facilities
should be used to allocate new computing resources.

• Storage scalability/redundancy. Persistent storage for
end users data (like test logs, journals, models, etc.) is
designed to be physically shared, although logically
separated (sandboxed), among different tenancy/lab
spaces, i.e., among users belonging to different
tenancies. Therefore, the cloud infrastructure has to
provide a global storage for MIDAS, and mechanisms
to ensure insulations/protection of data among different
tenancies. Although we figure out a single storage
entity, the cloud infrastructure should offer autoscaling,
as well as redundancy of data storage to cope with
failures.

• Portfolio redundancy. The MIDAS portfolio is the
repository of test methods and test components
developed by the MIDAS technological partners, and
used by tenancy users to carry out their testing
activities. As such, the portfolio storage is persistent as
well as physically and logically shared among all
MIDAS users. While tenancy users access the MIDAS
portfolio in read-only mode (through the test method
query service), test methods developers have read/write
access to the portfolio (through the test method
management service). In the deployment design we will
rely only on cloud storage redundancy mechanisms in
order to provide the MIDAS portfolio with the required
fault tolerance features.

6 A. De Francesco et al.

3.2 An IaaS cloud infrastructure for MIDAS:
Amazon EC2

The cloud service model adopted for the MIDAS cloud
deployment is the infrastructure as a service (IaaS) one,
mainly because of the possibility it offers to developers to
have full control of the entire software environment in
which their applications run (see Figure 3). The benefits of
this approach include support for legacy applications, and
the ability to customise the environment to suit the
application development needs. This is a very crucial
requirement for the MIDAS platform development, since it
relies on components that are developed and implemented
by the MIDAS technical partners in an independent way,
and that have to be integrated in a complete application. So,
software development environments are required to fulfil
different requirements and needs in terms of software
support and customisation. Furthermore, MIDAS includes
legacy commercial software, such as the TTworkbench
execution engine (http://www.testingtech.com), that may
require specific software support to be included in the
MIDAS platform. Finally, since an IaaS cloud relies on
virtualisation technologies, the portability of the MIDAS
platform to a different cloud provider is guaranteed. The
drawbacks of IaaS cloud solutions may be an additional
complexity and effort required to setup and deploy the
application.

In accordance to the project requirement of adopting a
public cloud infrastructure, and to the analysis of available
cloud providers, the Amazon Elastic Computing (EC2)
Platform (http://aws.amazon.com/ec2/) has been adopted. It
represents a good candidate solution since it currently offers
the best compromise among cost, MIDAS development
needs, and elasticity mechanisms. It provides advanced
solutions concerning the possibility to achieve computing
elasticity, and to tackle data storage reliability, persistency
and fault tolerance.

4 The MIDAS development strategy

The MIDAS platform is designed according to the SOA
paradigm that can fully leverage the web services paradigm
to develop, deploy and operate on a cloud. Its components
are asynchronous and stateless web services accessed
through well-defined APIs and communicating with each
other. The MIDAS services do not have tight dependencies
on each other, so each service can be developed, deployed
and managed by the cloud independently from the others. In
theory, each MIDAS service could have its own VMI
customised with the implementation-dependent software
requirements (libraries, runtime environments, databases,
ancillary services) as a basic deployment unit for the
specific service implementation. All core services in
MIDAS communicate asynchronously with the others and
treat them as black boxes, without code or functional
dependencies.

The overall architecture of the MIDAS integrated
platform on the cloud is a layered one (as shown in
Figure 4), and it is composed of three layers:

• the MIDAS front-end, allowing users to access all
MIDAS functionalities made available as a TaaS

• a computing development environment available as a
testing platform as a service (TPaaS), hosting all
MIDAS services

• the underlying cloud computing infrastructure used
according to the infrastructure as a service model.

The TPaaS layer is incrementally developed by integrating
all MIDAS components independently developed by the
partners step by step. Each step identifies a new release
version of the MIDAS platform.

Figure 3 Layers of the cloud stack w.r.t the user control in IaaS, PaaS and SaaS (see online version for colours)

 MIDAS: a cloud platform for SOA testing as a service 7

Figure 4 The MIDAS TaaS layered service architecture (see online version for colours)

Figure 5 MIDAS deployment strategy on the cloud

8 A. De Francesco et al.

4.1 The MIDAS prototype on the cloud

The MIDAS platform prototype, including the
MIDAS components and the basic MIDAS user front-end
(i.e., the MIDAS portal), is deployed on the cloud.

The deployment of the MIDAS TaaS platform on the
cloud takes into account mainly the sandbox and scalability
requirements of basic components, reported in MIDAS
Consortium (2014). The MIDAS deployment strategy is
depicted in Figure 5, where both labs and tenancies are
reported to show their symmetric behaviour from the cloud
deployment point of view. Each tenancy/lab instance has its
own private cloud resources pool that can scale by
exploiting the elasticity services of the underlying Amazon
cloud infrastructure.

Each tenancy/lab instance is logically composed of two
basic deployment units, i.e., two VMIs for each tenancy/lab,
one hosting administration and end user services, one
hosting core services. The rationale of this choice is due to
the different scalability and elasticity requirements of the
two groups of services. In fact, most of the workload is
expected from the use of the core services that host the
executor engine, the compiler of TTCN-3 scripts, and the
other components developed by the MIDAS partners.
According to these premises, end user services, tenancy
admin services and the MIDAS portal reside on one VM
(VM1), and the core services in another VM (VM2). In
principle, there is not functional requirement that obliges to
have core services in the same deployment unit. The
rationale of grouping core services in a single deployment
unit is twofold:

1 the entire pool of core services working instances and
associated resources could be scaled as a whole through
Amazon elasticity mechanisms

2 for the time being, there are no specific requirements to
partition and distribute core services on separate
deployment units.

The VMs computing resources can be resized to fit the
CPUs, RAM, network I/O requirements of the MIDAS
components.

To deploy the MIDAS platform on the cloud
infrastructure with the added components integrated
in it the Ansible (http://www.ansible.com) and Vagrant
(Hashimoto, 2013) free software tools are used. Vagrant is
used for creating customisable, lightweight, reproducible,
and portable development environments made up of VMIs,
while Ansible is used to automatically build and deploy on
different virtual machine instances the VMIs designed for
MIDAS. In the cloud, the VMs are configured with the
Amazon EC2 Security Groups (http://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/using-network-security.
html) that enable the communication ports to send SOAP
messages to test the SUTs and check for the results.
Furthermore, Amazon EC2 automatically manages
redundancy of deployment unit instances to deal with
failures. The cloud resource allocation strategy can be fine-
grained with the auto scaling and elastic load balancing

facilities that will allow the MIDAS platform to scale up
and down depending on the tenancy/lab resource usage
demands.

The MIDAS platform requirements on the storage
capabilities (see Figure 5), are three-fold. MIDAS services
need temporary disk space for implementation-dependent
service execution; each single running service may
temporally write/read data whose persistence lasts from the
service invocation time to the reply time. MIDAS needs a
short-term persistent disk space to implement custom data
sharing among services during single test method generation
and run activities. In fact, end user services, like test run,
are composite services orchestrating more atomic services,
so although all MIDAS services are stateless, component
services in an orchestration may communicate exchanging
data files through a shared memory disk space. In that case,
the persistence of these data must last from the invocation
time to the reply time of the composite service. Finally,
MIDAS must supply a persistent disk space for user data
including models, test data, test logs, journals and
documentation.

The store volumes associated to an Amazon EC2
instance, i.e., EBS volumes or ephemeral disks, provide a
satisfactory solution for the temporary and short-term
persistent disk spaces, since they are available until the
instance is destroyed. Instead, for the user data persistent
space shared among the different tenancies/labs, a suitable
solution is Amazon S3 since its data model can be used to
logically partition data among different tenancy/lab users in
a sandboxed way. Furthermore, Amazon S3 is used to
implement and manage the users persistent data storage
scaling and replication independently from the lab/tenancy
services temporary data storage. Finally, the Amazon RDS
database solution is adopted for the implementation of the
end user, core and tenancy admin services requiring to store
structured information with frequent accesses.

The adoption of Amazon S3 and Amazon RDS allows to
rely on Amazon AWS facilities that make it easy to
set up, operate, and scale both the relational database and
the persistent storages in the cloud. It provides
cost-efficient and resizable capacity while managing
time-consuming database administration tasks and storage
backups/replications.

The first prototype of the MIDAS TaaS on the cloud has
been implemented, and its components are mapped to
Amazon AWS services as shown in Figure 6(a). The system
under test represents the target of the testing activity and is
outside the cloud, as well as the license server that is the
license manager for the TTworkbench software suite.

4.2 The MIDAS development environment

To allow the developer partners to develop and integrate
their components and test methods in the MIDAS TPaaS, a
virtualisation approach was adopted already in the
development phase of the MIDAS platform. The separation
between resource provision and operating systems
introduced by virtualisation technologies is a key enabler
for cloud computing, specifically for IaaS clouds.

 MIDAS: a cloud platform for SOA testing as a service 9

Figure 6 The MIDAS, (a) prototype on the cloud and (b) development environment

(a) (b)

The MIDAS test developers have been provided with a
seamless, loosely coupled development and integration
platform, referred to as the MIDAS Development
Environment supporting them in their implementation,
debugging and testing activities. The MIDAS Development
Environment, shown in Figure 6(b), relies on open-source
and stable virtualisation technologies, and it is used to
develop all the MIDAS components in a consolidated and
conceptually shared VMI, and to configure and manage all
the software packages required for the development of the
MIDAS platform components, including third party
software dependency.

The environment is based on Vagrant, Ansible, and the
Oracle VM VirtualBox (http://www.virtualbox.org), that is
the default virtual machine monitor (VMM) for Vagrant
whose task is to create and run VMIs. The Vagrant and
Ansible tools are used to set up the shared VMI, while
virtual box is the virtual machine hypervisor. This VMI
includes standard hardware architecture, operating system,
developer tools, application containers, web servers, and
libraries shared among all partners. It is deployed on a local
machine by each developer partner, so allowing to locally
provide an emulation of the basic MIDAS platform on the
cloud. In fact, the MIDAS development Environment
includes all the main building blocks of the MIDAS
platform deployed on the cloud, as shown in Figure 6(b).

The S3 and DB storage facilities are emulated in the
development environment respectively by installing the
Little S3 server (an emulation of the Amazon S3 server
service) and the MySQL engine server. Developers can
carry out all their activities in an independent way, and they
interact only when integrating different components in the
common environment.

The adoption of a shared VMI to develop the
components of the MIDAS platform allows:

• to avoid using cloud resources in the MIDAS
development phase, so allowing for a cost-effective
strategy to develop and deploy the MIDAS platform on
the cloud without wasting cloud resources

• to guarantee the interoperability of the independently
developed components since they are released only
once they are stable and run on the same shared
environment aligned among all partners.

The virtualised MIDAS development environment is
deployed on the Amazon cloud infrastructure, at each
increment.

5 Monitoring MIDAS usage

To MIDAS service that monitors the usage of MIDAS
resources and services is the accounting and billing service
(A&B). It is a tenancy admin service acting as a reporting
front end for the tenancy administrator of the usage of cloud
resources. It will work in tandem with the MIDAS-specific
logging and tracing solutions to provide advanced
information on the usage of the MIDAS resources and to
exploit such information to design more advanced
accounting information for the MIDAS tenancies.

The MIDAS accounting and billing is built on top of the
Amazon account billing service, and it will be customised
according to the MIDAS business model whose definition is
still ongoing. The strategy adopted to implement it, is to
associate an Amazon identity and access management
(IAM) account to each tenancy admin created by the TaaS
administrator to monitor the usage of Amazon EC2
resources (computing resources, elastic load balancer,
autoscaling), Amazon RDS resources, Amazon S3 storage
resources, I/O requests, and so on for each tenancy.

10 A. De Francesco et al.

By enabling the consolidating billing of Amazon AWS,
a monthly report of cloud resources consumption for each
tenancy will be stored on Amazon S3 and processed to
report all information about cloud resources consumption.
In addition, we also keep track of resources consumption by
each tenancy user, by keeping the history of user activities
and the amount of cpu time spent in each testing task. All
this information will be used to charge, according to a
MIDAS business model, the tenancy users for cloud
resources usage and MIDAS services usage as well.

5.1 The MIDAS Monitoring implementation

The current implementation of the A&B service is
straightforward. Since there is a single A&B service per
tenancy, and given that, according to the directives reported
in MIDAS Deliverable D2.2, a tenancy is the atomic cost
centre for the MIDAS platform (i.e., the MIDAS TaaS
administrator will charge tenancies for cloud costs and
profits, no single tenancy users), the A&B service has been
preliminarily implemented as a facade of the Amazon A&B
service. Hence, the current implementation of the A&B
service reports to tenancy administrators the current
monthly consolidated usage of CPU resources, disk space
and data transfers of the users of the tenancy. To further
improve the A&B service functionalities, we addressed the
problem of monitoring resources usage in a generic
software-as-a-service cloud. In general, the monitoring of
events in a cloud can be performed on three levels:

1 Infrastructure level: events like changes in CPU load,
memory consumption, disk occupancy, network
transfer are monitored at physical resource level
(i.e., OS kernel mechanisms) or virtual resource level
(i.e., hypervisor mechanisms). These events are then
exploited to derive resource usages during a given
period of time (e.g., hour, day or month). Examples of
these monitoring solutions include custom software
deployed by cloud users such as Nagios, the industry
standard for IT infrastructure monitoring, or proprietary
software deployed by cloud providers such as
CloudWatch, the Amazon monitoring service.

2 Platform level: the information we can obtain at this
level for a SOA software depends on the deployment of
the SOA, its runtime environment and its
communications. Since MIDAS is implemented using
web services WSDL/SOAP technologies in Java and
the reference web application container for MIDAS
services is Apache Tomcat, the events we are able to
monitor are:
• all SOAP messages exchanged between web

services, together with their platform-dependent
and application-dependent information

• tomcat logs on all activities performed by the web
application containers.

The services collecting and aggregating these events
must be designed and implemented by the MIDAS

platform developers, since the semantics of the
messages and, partially, of the container logs are a
domain knowledge described in detail in D2.2 and
D6.2. Moreover, the storage, the processing, the
analysis and the visualisation of these events should be
implemented in a customised component(s) specifically
designed for the MIDAS platform.

3 Application level: the information collected at
application level strongly depends on the specific
testing domain. In theory, any test method, along with
its implementation, can be instrumented to collect a
feature rich plethora of information on its behaviour
and usage. In practice, this requires a deep knowledge
and control of the functional implementation (i.e.,
source code) of single testing components, as well as
specifically tailored monitoring and tracing
mechanisms for each testing component.

The chosen monitoring solution adopted for the
MIDAS platform is at platform level. Monitoring at
infrastructure level provides detailed information on the
resource usages that are difficult to map on the MIDAS
architecture, composed of asynchronously
communicating web services. Moreover, even if it
could be possible to design ad-hoc solutions using a
specific monitoring product like Nagios, its
configuration, deployment and management will have a
negative impact on the manageability of the whole
MIDAS infrastructure. On the other side, monitoring at
application level is not affordable, since we lack any
access to the source code of the components deployed
in the MIDAS architecture.

Even at platform level there are some caveats on the
information we can collect and use. Logs are, in general, a
vast amount of unstructured data. This information must be
collected, stored and processed in order to extract useful
events continuously, and this sequence of step must be
continuously repeated. This can require a dedicated cloud
platform just to process the data, and an additional
engineering effort to design algorithms and solutions to
implement log processors. Therefore, the reference log
mechanism for the MIDAS platform is based on
interception of all SOAP messages exchanged among
MIDAS web services. This information is structured and
with a clear semantic domain.

The basic element of the implementation of the MIDAS
monitoring is an application server interceptor, a small
software automatically deployed with the MIDAS platform
on the cloud in any web application container, which is
responsible to automatically process all incoming and
outcoming SOAP messages, extract relevant timestamped
information such as user id, test method id, target service
that can be used by the A&B service to perform more
elaborated operations. It is worth noting that MIDAS
developers, as well as future test method developers, do not
need to be explicitly aware of any monitoring configuration
mechanism, as everything is automatically managed by the
provided interceptor, even its own deployment.

 MIDAS: a cloud platform for SOA testing as a service 11

However, since MIDAS is a testing-as-a-service
platform implemented according to the SOA approach, its
customers should not be aware of the underlying
implementation of the services components of the platform,
as well as any cloud-related details.

In this view, we aim for a billing model that is simple
and transparent to its users, hiding from them all the
implementation details such as the cloud provider
hardware/software stack or the MIDAS internal
architecture. The costs can then only be billed on metrics
that are directly observable by the user, and should be
charged based on the interactions that the user has with the
platform.

Since all such interactions can only be performed
through the end user services, we plan on instrumenting
such services to log into a database (the usage DB) all the
API interactions from the user together with metadata that
can be included in the billing model; for example, for the
file management service, these metadata could be the size of
the files that are stored or retrieved.

The usage DB interaction with the end user services can
be seen in Figure 7. Note that the Usage DB does not trace
any interaction between the internal MIDAS services, since
these are implementation details, thus invisible to the user;
furthermore, many of these services are not owned by the
MIDAS platform developer, so it would be necessary to
agree on a common logging schema and have all the
partners implement the logging instrumentation in their
services.

It is however useful to log the interactions between the
internal services during the execution of a test, both for
developing/debugging/improving the services, and also to

enable analytics that could identify bottlenecks or additional
metrics that deserve to be added to the usage DB. To do this
in a service-agnostic way, we plan to implement a SOAP
interceptor that logs into a trace DB metadata about all the
SOAP messages received by each service, specifically
information that is present in all the messages of the
MIDAS platform, such as the user that originated the
request and the test tracking ID.

For the purposes of accounting, the information in the
usage DB is augmented with the information in the test
status DB, that tracks the status of a test task, in particular
storing the invocation time, the user that invoked the test,
and the completion time; this allows the cost model to
include a usage metric for each user that accounts the
overall time spent by the platform in executing tasks
invoked by that user. This way, both load-independent
infrastructural costs (base services, DBs, licenses...) and
load-dependent costs (network traffic, test executor
instances) can be factored in a per-minute billing rate, once
all these costs have been estimated.

An example can be seen in Figure 8: tests invoked by
user1 take overall eight minutes, by user2 ten minutes, and
by user3 22 minutes, summing up to 38 minutes. The
infrastructural cost, e.g., 10$, can then be accounted to the
users in fractional parts of respectively 8/38, 10/38, and
22/38, plus the costs of the other operations as accounted by
the usage DB. In this way, user1 will be charged for 2.1$,
user2 for 2.6$ and user3 for 5.3$.

In Figures 9 and 10 we show an example of respectively
accounting and billing information for users of a MIDAS
tenancy.

Figure 7 The MIDAS monitoring interceptors (see online version for colours)

12 A. De Francesco et al.

Figure 8 Time usage of tenancy users

6 MIDAS platform elasticity

The SOA approach adopted for MIDAS platform makes it
naturally suitable for automatic elasticity. The statelessness
and loosely coupling of the MIDAS services represent the
key enabling factors to provide automatic reconfiguration of
MIDAS components depending on their usage. To fully
implement automatic elasticity mechanisms in a cloud-
based SOA application, such as MIDAS, the underlying
cloud infrastructure must provide mechanisms both to
monitor the resources usage of the applications, and to
automatically scale up and down the virtual machines
hosting running instances of the same service container of a
tenancy/lab. Furthermore, the virtual machines allocated to
the same tenancy/lab should be managed by a load balancer
able to steer and schedule connection requests to the
instances according to some predefined algorithm.

Amazon AWS provides components and services to
address all the aforementioned elasticity requirements that
will be used to implement the MIDAS auto scaling and
elastic load balancing facilities to optimise the use of cloud
resources for the MIDAS platform.

The Amazon AWS cloud building blocks for the
MIDAS scaling and elasticity components are Amazon auto
scaling, elastic load balancing and cloud watch. As already
described, for each tenancy the VM1 is the Amazon EC2
instance where the MIDAS portal, the end user services and

the tenancy admin services are deployed; while the VM2 is
the Amazon EC2 instance hosting the core services. The
core services are the services that contain the engines for the
TTCN3 scripts execution, the inference logic, the usage
profile scheduling, and so on. As we said, we expect that the
CPU workload and/or network activity and/or disk
utilisation of the VM2, depending on the users incoming
requests of the core services, can increase, so requiring
additional facilities to scale resources up/down according to
some policies contracted by the tenancy administrator with
the MIDAS TaaS administrator, and included in the SLA
contracted between them.

To deal with scalability and elasticity requirements, the
cloud infrastructure will be modified as shown in Figure 11.
The auto scaling of the Amazon AWS enables us to satisfy
the varying computational demands of MIDAS tenancies for
the core components of the MIDAS platform, so reducing
the need to provision Amazon EC2 capacity in advance. For
example, we can set a condition to add new Amazon EC2
instances in increments up to five instances to the auto
scaling group (see Figure 11) when the average CPU
utilisation of the Amazon EC2 VM2 running instance goes
above the 80% for five minutes; and similarly, we can set a
condition to remove Amazon EC2 VM2 instances in the
same increments when CPU utilisation falls below 20% for
ten minutes. When the auto scaling group is created, we rely
on the Amazon elastic load balancing service to distribute
fairly the workload of incoming requests to the instances in
the auto scaling group. For each tenancy, the CPU
workload, network activities, disk utilisation will be
monitored, in order to set up alarms to signal events
according to the set conditions. These alarms will be used to
trigger the auto scaling service so to scale up/down the
Amazon EC2 VM2 instances accordingly, so to run the VM
hosting the core services at optimal utilisation.

Figure 9 Accounting information of tenancy users (see online version for colours)

 MIDAS: a cloud platform for SOA testing as a service 13

Figure 10 Billing information of tenancy users (see online version for colours)

Figure 11 Autoscaling for a MIDAS tenancy (see online version

for colours)

The elastic load balancing service allows also, for example,
to make sure that the number of healthy Amazon EC2
instances behind an elastic load balancer is never fewer than
two. We can use auto scaling to set this condition, and when
auto scaling detects that this condition is verified, it
automatically adds the requested amount of Amazon EC2
VM2 instances to the auto scaling group. Or, if we want to
make sure that we add Amazon EC2 VM2 instances when
the latency of any of the Amazon EC2 VM2 instances
exceeds four seconds over any 15 minute period, we can set
that condition, and auto scaling will take the appropriate
action on the Amazon EC2 VM2 instances.

7 Commercial solutions related to MIDAS

The advent of cloud computing has changed the way
software consumers use software as well as software
vendors develop and deliver their products. This revolution
is occurring also in the software testing area. While in the
past testing tools and software where sold and delivered by
licensing to run in-house, nowadays several companies and
organisations provide testing facilities on demand, and they
are billed per use.

Here a non-exhaustive list of some commercial software
platforms providing testing capabilities as SaaS solution in
cloud settings.

CloudTest (by SOASTA Inc., http://www.soasta.com/
products/cloudtest) is cloud-based testing solution provided
with a dynamic web application that combines Ajax-based
user interfaces and distributed web services to support test
creation, execution and test result analytics. CloudTest
framework allows users to build, execute and analyse
performance and functional tests and to share them with
other CloudTest users. Professional test developers and
performance engineers can use CloudTest to build tests that
can be used in the CloudTest framework at web scale.
CloudTest uses cloud resources quick availability and
scalability to afford realistic load testing of web applications
without hardware resource constraints. CloudTest uses
persistent and scalable cloud storage to archive data and
correlates data streams from a distributed load test in a
single result on synchronised time-line to be used by the
CloudTest analytics components.

Zephyr (by D Software Inc., http://www.getzephyr.com/
zephyr) provides a framework for testing lifecycle
management. Zephyr framework enables collaboration

14 A. De Francesco et al.

along the software development cycle: it allows teams to
effectively manage test resources, testing projects, releases,
requirements, test cases, scheduling, test execution, defects,
automation, collaboration, metrics and reporting, and it
provides global access, collaboration and management
visibility. Zephyr’s SaaS-based solution allows costumers to
use a cloud-based dedicated test management system that
relies on the Amazon 24/7 secure cloud computing
platform. In addition to relieve users from the cost of
infrastructure, backups and upgrades, Zephyr’s SaaS offers a
fast global access and sharing platform for testers, as well as
uptime and global disaster recovery mechanisms.

TestMaker (by PushToTestTM, http://www.pushtotest.
com/cloudtesting) is a distributed test environment, that can
run tests either in on-premise or on-demand cloud-based
modes, or both. TestMaker is a console and runtime to
operate functional tests, load and performance tests, and
web services motoring in a distributed networks of
TestNodes. TestMaker technology runs on different cloud
infrastructures, like Amazon Web Services (EC2), GoGrid,
and RackSpace. TestMaker defines its proprietary model,
namely TestScenario, of orchestration of a test.
TestScenario defines the locations of TestNodes to operate a
test. The mapping of TestNodes to cloud resources is
flexible, in the sense that you can remap TestNodes
(and the associated test runs) on multiple types of cloud test
equipments.

A software TaaS solution is provided by Riungu-
Kalliosaari et al. (2013) including cloud-enabled test
environments and test toolkits. Testing facilities are
accessible using a central service portal, where you can
select the testing service you require and pay-per-use.

SkyTap company provides SaaS-based environments
as reported in SkyTap (http://www.skytap.com/product/
intelligent-automation-platform) for developing and testing
complex applications. Users can import existing virtualised
applications or build new applications in the cloud.
Environments can be accessed through any modern web
browser, REST-based API, or command line interface
(CLI). Skytap cloud uses a browser-based interface for all
system management, and hosts a library of pre-configured
virtual machine images. Using either these images or their
own imported VMIs, users can create sharable
configurations of one or more machines, and securely
connect to active machines.

The aforementioned list of commercial products has not
been here reported for comparison with the MIDAS
cloud-based testing solution, but to show the potential of the
MIDAS results with respect to what is currently available
on the market. The main limit of commercial solutions is the
difficulty (in some case the impossibility) to create/add new
testing methods, and to freely compose them in new testing
scenarios and share them among the user organisations. This
is a peculiarity of MIDAS, which not only offers a portfolio
of testing solutions, but provides also a framework in which
test developers design, write and orchestrate their own test
methods in new ways, relying on a common shared Domain

Specific Language (DSL) as a lingua franca for the
integration and communication of the heterogeneous
components of the MIDAS framework (developed as
services by different partners and with different
technologies).

From the cloud perspective, MIDAS shares
with the aforementioned commercial solutions the same
objectives in the use of cloud resources. Indeed most of the
discussed commercial products allows both on-premise and
on-demand SaaS modes of testing capabilities provisioning.
MIDAS was designed as a SOA composed of testing
services plus administrative and storage management
services to provide testing capabilities solely in an
on-demand SaaS mode.

Like most of the mentioned commercial solutions, the
MIDAS platform can be viewed as a provider of virtualised
(cloud) resources to be distributed and delivered to test
users, whereas cloud hardware infrastructures are acquired
by Amazon EC2 and managed by MIDAS administrators to
pursue the MIDAS business model in respect to the
SLAs agreed with consumers. Like all cloud-based testing
solutions MIDAS aims to transparently offer to test users
efficient, flexible and large scale hardware infrastructures to
support intensive and resource-consuming testing activities.
In commercial solutions this is crucial in particular for load
and stress testing of web applications and SOAs in realistic
scenarios. Nevertheless, in MIDAS also the provisioning of
test executors, generators and schedulers are resources to be
distributed and delivered in pay-per-use mode. The
fine-grain monitoring facilities of MIDAS allow to profile
usage of both hardware and software resources and,
consequently, to charge users for access to specific testing
capabilities/technologies that could be MIDAS built-ins or
made available in the MIDAS framework by test developers
under payment or other forms of agreements.

8 Conclusions

MIDAS TaaS will provide companies with services to
design, deploy and run their test cases without disclosing
any information to the cloud provider, and without having
to program the whole test procedures from scratch. The
costs saving and easy accessibility of cloud’s extremely
large computing resources will make the MIDAS testing
facility usage available to geographically distributed users,
executing wide varieties of user test scenarios, with a
scalability range previously unattainable in traditional
testing environments.

In this paper the MIDAS TaaS platform deployment
strategy on a cloud infrastructure is discussed. The adoption
of an IaaS cloud infrastructure is mainly due to the
flexibility it offers to developers in the control of cloud
resources, so allowing to customise scalability strategies,
according to the different requirements for the different
MIDAS components. In addition, due to the rapid evolution
of the cloud market together with the lack of standards, it is

 MIDAS: a cloud platform for SOA testing as a service 15

crucial to guarantee the portability to different cloud
providers of a platform like MIDAS, that is intended to be
industrialised in the future. Since an IaaS cloud provides
cloud resources through virtualisation technologies, it
allows to move to different cloud providers with minimum
effort. For the time being, Amazon EC2 as the underlying
cloud infrastructure represents a satisfying solution offering
the best compromise among cost, development features and
elasticity mechanisms.

The provision of a shared development environment
based on the same virtualisation technologies adopted for its
deployment on the cloud allows to easily integrate
components independently developed by the partners and at
the same time to address the different software requirements
of the different MIDAS components.

The deployment strategy of MIDAS shows how the
requirements of an automated SOA testing facility on the
cloud could be met through the design of a SOA-based
platform where the component services are loosely coupled
and stateless, and how their cloud deployment is completely
transparent to the developers of the MIDAS components.

The multi-tenancy design allows to tailor scalability and
elasticity requirements of cloud resources coming from
different users, so providing a real pay-per-use TaaS
facility, accommodating different cost business model in a
foreseen industrialisation phase of the MIDAS platform.
The Accounting and Billing services will be used to support
the cost business models adopted for different types of
companies.

In conclusion, the MIDAS platform can be viewed as a
provider of virtualised cloud resources to be distributed and
delivered to test users, whereas cloud hardware
infrastructures are acquired by Amazon EC2 and managed
by MIDAS administrators to pursue the MIDAS business
model in compliance with the SLAs agreed with consumers.
More importantly, MIDAS also provides test executors,
generators and schedulers as services to be delivered in
pay-per-use mode. The fine-grain monitoring facilities of
MIDAS allow to profile usage of both hardware resources
and software services and, consequently, to charge users for
accessing specific testing capabilities/technologies that
could be MIDAS built-ins or made available in the MIDAS
framework by test developers under payment or other forms
of agreements. As future work, the platform will be tested
on two real world case pilots that will provide on one hand
an assessment of the developed test methods for SOA
architectures, and on the other hand to collect information
on the real cloud resources demands coming from different
kinds of SOA-based applications.

Acknowledgements

This work is part of the MIDAS Project, funded by the EU
FP7-ICT-2012-8, Grant Agreement No. 318786.

References
Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004) Web

Services – Concepts, Architectures and Applications,
Springer-Verlag, Berlin Heidelberg.

Amazon EC2 Security Groups [online]
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/usin
g-network-security.html.

Amazon Elastic Computing (EC2) Platform, AWS – Amazon
Elastic Compute Cloud (EC2) – Scalable Cloud Hosting
[online] http://aws.amazon.com/ec2/ (accessed October
2014).

Ansible Documentation, http://docs.ansible.com.
Canfora, G. and Di Penta, M. (2009) ‘Service-oriented

architectures testing: a survey’, Software Engineering, LNCS,
Vol. 5413, pp.78–105.

D Software Inc., Portfolio of Test Management Products from
Zephyr, http://www.getzephyr.com/zephyr.

Dustdar, S. and Haslinger, S. (2004) ‘Testing of service-oriented
architectures – a practical approach’, Object-Oriented and
Internet-Based Technologies, LNCS, Vol. 3263, pp.97–109.

European FP7 Project MIDAS, MIDAS EU Project: Model
and Inference Driven – Automated Testing of Service
Architectures [online] http://midas-project.eu (accessed
October 2014).

Grabowski, J., Hogrefe, D., Rethy, G., Schieferdecker, I.,
Wiles, A. and Willcock, C. (2003) ‘An introduction to the
testing and test control notation (ttcn-3)’, Int. J. of Computer
and Telecommunications Networking, Vol. 42, No. 3,
pp.375–403.

Hashimoto, M. (2013) Vagrant: Up and Running, O’Reilly.
Kalamegam, P. and Godandapani, Z. (2012) ‘A survey on testing

SOA built using web services’, Int. Journal of Software
Engineering and its Applications, Vol. 6, No. 4, pp.91–104.

MIDAS Consortium (xxxx) Architecture and Specifications of the
MIDAS Framework and Platform, MIDAS Deliverable D2.2.

MIDAS Consortium (2014) Specification and Design of the Basic
MIDAS Platform as a Service on the Cloud, MIDAS
Deliverable D6.2.

OMG, UML Testing Profile (UTP) [online] http://utp.omg.org.
Oracle VM VirtualBox, User Manual Version 4.3.18 [online]

http://download.virtualbox.org/virtualbox/UserManual.pdf
(accessed October 2014).

Papazoglou, M.P. and van den Heuvel, W-J. (2007) ‘Service
oriented architectures: approaches, technologies and research
issues’, The VLDB Journal, Vol. 16, No. 3, pp.389–415.

PushToTestTM, PushToTest: Cloud Testing [online]
http://www.pushtotest.com/cloudtesting.

Riungu-Kalliosaari, L., Taipale, O. and Smolander, K. (2013)
Software Testing as a Service: Perceptions from Practise,
pp.196–215, IGI Global, Hershey.

SOASTA Inc., Cloud Testing with CloudTest [online]
http://www.soasta.com/products/cloudtest.

SkyTap, Dev/Test Environments for Enterprise [online]
http://www.skytap.com/product/intelligent-automation-
platform.

Testing Technology, TTworkbench (UTP) [online]
http://www.testingtech.com/products/ttworkbench.php.

Wendland, M.F., De Francesco, A., Di Napoli, C. and De Rosa, F.
(2013) ‘MIDAS: automated SOA testing on the cloud’,
ERCIM News, Vol. 95, p.46.

