
Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 263�275. http://www.spe.org ISSN 1895-1767© 2010 SCPEMODELING STREAM COMMUNICATIONS IN COMPONENT-BASED APPLICATIONS ∗M. DANELUTTO†, D. LAFORENZA‡, N. TONELLOTTO‡, M. VANNESCHI†, AND C. ZOCCOLO†Abstrat. Component tehnology is a promising approah to develop Grid appliations, allowing to design very omplex appli-ations by hierarhial omposition of basi omponents. Nevertheless, omponent appliations on Grids have omplex deploymentmodels. Performane-sensitive deisions should be taken by automati tools, mathing developer knowledge about omponentperformane with QoS requirements on the appliations, in order to �nd deployment plans that satisfy a Servie Level Agreement(SLA).This paper presents a steady-state performane model for omponent-based appliations with stream ommuniation semantis.The model stritly adheres to the hierarhial nature of omponent-based appliations, and is of pratial use in launh-timedeisions.Key words: grid omputing; heterogeneous environments; stream omputations; performane model; mapping.1. Introdution. Grid omputing is an emerging tehnology that enables the aggregation of heteroge-neous, distributed resoures to solve omputational problems of ever inreasing size and omplexity. Theappliations that best perform on Grid platforms are the ones requiring large omputational power, or thetreatment of large data sets, i. e. a sublass of High-Performane Appliations [17℄.Suh appliations (e.g. data-mining [12℄, query proessing [3℄, image proessing and visualization [2℄ andmultimedia streaming [38℄) an be onveniently expressed using a formalism based on two fundamental notions:streams of data �owing between omponents, and omponents (either sequential or parallel) proessing them.Several programming languages are built on these onepts. Skeleton-based languages (e.g. SkIE [4℄ andSBASCO [14℄) and skeleton libraries (e.g. eSkel [11℄ and Kuhen's C++ skeleton library [21℄) exploit thenotion of streams for task-parallel skeletons (e.g. pipe and farm). More general languages like ASSIST [33℄ andDatautter [15℄ introdue modules and streams as primitive onepts to struture parallel appliations.Grid programming frameworks (e.g. GrADS [9℄, ASSIST [13℄) are in harge of the omplete automationof appliation exeution management, e�iently exploiting Grid resoures. Moreover, they should be able toexeute the appliation with user-required QoS, adapting the exeution to the dynami hanges of Grid resoures.The traditional omponent mapping strategy, in whih omponents are statially deployed in a distributedenvironment by their developers, does not �t well in suh senario. A broader deployment model is required,featuring(i) manual mapping, in whih the omponents are already paired with their resoures (on whih they aredeployed),(ii) resoures disovery and seletion at launh time, to guarantee the initial desired performane,(iii) adaptive omponents management, that at run-time adjust the set of omputing resoures exploited[31, 1℄, in order to adapt to di�erent performane requirements (on-demand omputing) or to hanging resouresavailability.Aording to this model, the deployment framework must automatially manage the operations needed toenfore the appliation desired QoS. This an be obtained with the spei�ation of a performane ontrat [34℄.Our approah intends to automatise the tasks needed to start the exeution of HPC appliations. Our �nalgoal is to allow an as large as possible user ommunity to gain full bene�ts from the Grid, and at the same timeto give the maximum generality, appliability and easy of use.The main ontributions of this paper are as follows:(i) We propose an analytial model of the dynami behavior of sequential/parallel omponents, hierar-hial omponents and omponent appliations, ommuniating through typed streams of data. It is suitedto be used in simulation environments, to synthetially generate omponents and appliations to test map-ping/sheduling solutions in a repeatable and ontrolled setting. Eventually, the proposed dynami model anbe exploited in the implementation of dynami reon�guration poliies [1℄.
∗This work has been supported by: the Italian MIUR FIRB Grid.it projet, No. RBNE01KNFP, on High-performane Gridplatforms and tools, and the European CoreGRID NoE (European Researh Network on Foundations, Software Infrastrutures andAppliations for Large Sale, Distributed, GRID and Peer-to-Peer Tehnologies, ontrat no. IST-2002-004265).
†Department of Computer Siene, University of Pisa, Pisa, Italy
‡Information Siene and Tehnologies Institute, National Researh Counil, Pisa, Italy263

264 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. Zoolo(ii) Starting from the dynami model we identify the set of variables that an be used to desribe theperformane behavior of an appliation, and we derive the set of relations among them whih hold at steady-state(performane model). In this way we abstrat from partiular runtime platforms and we apture all possiblesteady-state behaviors of an appliation. Moreover, their formulation by means of linear algebra allows us tohierarhially ompose the performane models of several omponents to derive the steady-state model of newomponents or appliations.(iii) We introdue a de�nition of performane model for stream appliations, whih is exploited in launh-time mapping and runtime reon�guration deisions.After a survey of related work (Set. 2), this paper presents a dynami model of stream-based omputations(Set. 3), and in Set. 4 suh model is exploited to derive a steady-state performane model for stream-basedappliations. In Set. 5, suh model is applied to a ase study, to predit the program behavior at run-time,and to devise a orret initial mapping for spei�ed QoS levels. Setion 6 onludes the paper, disussing thepresented approah and future work.2. Related Work. Performane spei�ation of omponents and their interations is a basi problemthat must be solved to enable software engineers to assemble e�ient appliations [27℄. Moreover, performanemodeling is one of the key aspets that needs to be addressed to fae sheduling/mapping problems in het-erogeneous platforms. It arises in automati omponent plaement and reon�guration. Several reent worksfous on performane modeling tehniques to analyze the behavior of omponent-based parallel appliations ondistributed, heterogenous, dynami platforms.Analyti performane models in software engineering make extensive use of UML formalism to desribesoftware omponent behavioral models [35℄ and to derive models based on Queuing Networks [19℄ or Lay-ered Queueing Networks [36℄ to be exploited in design phase of the lifeyle of software. The same holdsfor Stohasti Petri Nets [20℄ and Stohasti Proess Algebras [18℄. Suh models typially translate a paral-lel appliation into an analyti representation of its exeution behavior and the target runtime system (a-ording to the Software Performane Engineering methodology [28℄). A detailed survey of suh models isin [5℄. Suh translation is usually not straightforward. It may require approximations to obtain mathemat-ial models [29℄ for whih a losed-form solution is known. Stohasti models usually require the solutionof the underlying Markov hain whih an easily lead to numerial problems due to the spae state explo-sion [5℄. More omplex models an be solved by means of simulation, at the ost of a larger omputationtime.Symboli performane modeling [32℄ is a methodology that enables a rapid development of low omplexityand parametri performane models. Symboli performane models an be derived from simulation models,trading o� result auray for model evaluation ost. In [32℄ a symboli performane model for the Pamelamodeling language is introdued. It derives lower bounds for steady-state performanes of appliations startingfrom a model of the program and of the shared resoures, ombining deterministi Diret Ayli Graphs (DAGs)modeling with mutual exlusion. One of the strengths of the Pamela approah is that it is fast and easy totransform a regularly strutured appliation into a performane model. The main limitation of suh approahis that it omputes lower bounds of the performane of a program. Symboli performane models share severalproperties with the model we propose: both an be extrated from the struture of programs, are parametri,and an be e�iently evaluated. The main di�erene is that the presented model does not ompute a lowerbound, but the asymptoti steady-state performane of an appliation, that is in general a better approximationof the real performane.The asymptoti steady-state analysis has been pioneered by Bertsimas and Gamarnik [10℄. This approahhas been reently applied to mapping and sheduling problems of parallel appliations on heterogeneous plat-forms [23, 7, 6℄, in whih the analysis is applied to partiular lasses of parallel appliations (divisible load [23℄,master/slave [6℄, pipelined and satter operations [7℄), in the hypothesis that the set of resoures is known inadvane. The existing steady-state approahes apply only to a restrited lass of strutured parallel applia-tions, assuming to know the runtime environment in suh a way to derive optimal sheduling of the appliationomponents. In a dynami environment like a Grid an optimal initial plaement of the omponents may be-ome useless very soon, beause the onditions of the exeution platform may vary dynamially. The presentedsteady-state analysis an be applied to a broader lass of strutured parallel appliations and tries to solve adi�erent problem, i. e. to build a onrete model of omponents/appliations to be exploited in their mappingon previously-unknown target platforms.

Modeling Stream Communiations in Component-based Appliations 265Strutural performane models [25℄ are the �rst e�ort to develop ompositional performane models foromponent appliations. Most sienti� and Grid omponent models rely on the onept of algorithmi skeleton.Skeletons are ommon, reusable and e�ient strutured parallelism exploitation patterns. One advantage ofthe skeletal approah is that parametri ost models an be devised for the evaluation of runtime performaneof skeleton ompositions. In [14, 8℄ di�erent ost models are assoiated to eah skeleton of an appliationto enhane its runtime performane through parallelism/repliation degree adjustments and initial mappingseletion, respetively. The authors of [14℄ propose parametri ost models for pipe, farm and multiblokskeletons, that an be arbitrarily omposed and nested. In [8℄, analyti ost models for appliations omposed bypipes and deals are derived within a stohasti proess algebra formulation. Strutural performane models areextended by the presented model by proposing a methodology well-suited for generi omposition of skeletons,and by taking into aount the synhronization problems introdued by using streamed ommuniations.Trae-based performane models [34, 26℄ are urrently exploited in parallel/Grid environments to model theperformane of sets of kernel appliations. Reording and analyzing exeution traes on referene arhiteturesof suh appliation it is possible, with a ertain degree of preision, to foreast the performane of the same orsimilar appliations on di�erent resoures. Trae information is exploited in the presented model, but in di�erentway with respet to the existing approahes. Instead of pro�ling a whole appliation on a set of representativeresoures, the appliation model is kept independent from resoures. When the appliation will be mapped onatual resoures, historial information will be used to model the runtime behavior of single omponents, andthen suh information will be oupled with the omponent interations information to obtain a predition ofthe performane of the whole appliation.The problem of deriving a performane model for omponents has been addressed also in the ontextof omponent frameworks suh as EJB [37℄, COM+/.NET [16℄ and CCA [24℄. Suh works apply analytialperformane model (LQN) or trae-based performane model to derive a model for omponents. In [30℄, trae-based models are exploited to selet the most suitable omponents, when multiple hoies are available, to buildan optimal appliation, from the point of view of performane.3. Dynami Behavior. An appliation an be strutured as a hypergraph whose nodes represent primitiveomponents and whose (hyper)edges represent ommuniations or synhronizations between omponents. Nodesinterat with input (server) interfaes and output (lient) interfaes. Edges are direted and an onnet twoor more nodes through their interfaes. Two nodes may be linked by more than a single edge.3.1. Communiations. Communiations between omponents are implemented through input/outputinterfaes bindings. In this work data-�ow stream ommuniations are studied. Every omponent reeives datathrough one or more input interfaes, performs some omputations, and generates new data to be sent throughone or more output interfaes.In this ontext, a stream represents a typed, unidiretional ommuniation hannel between a non-empty,�nite set of omponents (produers) and a non-empty, �nite set of omponents (onsumers). The atomi pieeof information transferred through a stream is alled item. A produer is onneted to a stream through anoutput interfae, while a onsumer is onneted to a stream through an input interfae. Every node an beproduer or onsumer of several streams, and it is possible to speify yli strutures (i. e. the ommuniationstruture is not restrited to be a DAG).Components an be onneted by streams aording to three di�erent patterns:(i) uniast: one-to-one onnetion. Every item sent on the output stream interfae is reeived in orderby the input stream interfae.(ii) merge: many-to-one onnetion. Every item sent on the output stream interfaes is reeived by theinput stream interfae. The temporal ordering of the items oming from eah input interfae is preserved, butthe interleaving between the di�erent soures is non-deterministi.(iii) broadast: one-to-many onnetion. Every item sent on the output stream interfae is reeived inorder by the input stream interfaes. The reeptions happening on di�erent input interfaes are not synhronized.3.2. Computations. Components implement sequential as well as parallel omputations. A sequentialomponent exeutes a single funtion in a single ative thread, proessing items as they are reeived. For aparallel omponent, two senarios are possible:(i) data parallel: a single funtion is exeuted in parallel on di�erent portions of the same data;(ii) task parallel: several funtions (or ativations of the same funtion) are exeuted in parallel onindependent data.

266 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. ZooloA primitive omponent, either sequential or parallel, at runtime repeatedly reeives items from its inputstreams, performs some omputations and delivers result items to its output streams.A omponent an have several input streams. The set of input streams is partitioned between the omputa-tions assoiated with the omponents. Eah input stream is assoiated to only one omputation; nevertheless,spontaneous omputations may exist, that do not need input items to ativate, but follow own ativation poliies(e.g. periodially).A omputation an be ativated if the following onditions hold:(i) the omponent an exeute a new funtion (this means that it is idle, or it is parallel and threads areavailable to exeute it),(ii) the assoiated input items have been reeived, or no item is neessary.A sequential omponent an ativate a new funtion only when it is idle. A parallel omponent an have atmost one ative data-parallel omputation at any given time (omposed by a �xed number of threads), or severaltask-parallel omputations running in parallel (up to the maximum number of threads in the omponent).A omponent an have several output streams. One or more omputations of the omponent an dispathdata on eah output stream.3.3. Node Behavior. In order to desribe the behavior of a omputation at runtime, onsider Fig. 3.1.
Fig. 3.1. Sequential omponent at runtimeWithout loss of generality, a sequential omponent is onsidered; the displayed quantities represent:(i) ik(t): total number of reeived items at time t from the kth input interfae;(ii) e(t): total number of omputations arried out at time t;(iii) oj(t): total number of sent items at time t through the jth output interfae.Continuous quantities are used to model partial evolution, e.g. e(t) = 3.5 means that the node reahed the halfway point in the fourth omputation.The ativation of a omputation an happen only when the number of items ompletely reeived on eahassoiated stream is greater than the number of partially omputed items:
∀k = 1, . . . , n

⌊

ik(t)
⌋

− e(t) > 0 (3.1)The node implementation will exploit �nite bu�ers to store reeived items for eah input interfae, therefore foreah input interfae and assoiated omputation the following must hold:
∀k = 1, . . . , n ik(t)−

⌊

e(t)
⌋

≤ τ1k (3.2)where τ1k represents the maximum number of elements that an be reeived on the kth input interfae beforethe stream bloks. Then the maximum admissible value for ik(t) at time t is:
imax
k (t) = τ1k +

⌊

e(t)
⌋ (3.3)Assuming that no sensible delays are present between the end of omputations and the beginning of the transmis-sion of the produed items, the total number of transmitted items is related to the progress of the omputationsof the node. In the general ase of a node with s funtions, the following equation holds for eah output interfae:

∀j = 1, . . . ,m oj(t) = fj
(

e1(t), . . . , es(t)
) (3.4)where ei(t) represents the number of ativations arried out at time t for the i − th funtion. The transferfuntion fj relates the number of data outputs oj(t) to the number of performed omputations e1(t), . . . , es(t).

Modeling Stream Communiations in Component-based Appliations 2673.4. Edge Behavior. In order to desribe the behavior of a data transmission on a stream, onsider auniast stream. The involved variables are o(t), total number of items sent at time t from soure interfae, and
i(t), total number of items reeived at time t by the destination interfae. A new transmission begins only aftera full item is produed:

i(t) ≤ ⌊o(t)⌋ (3.5)The edge implementation will exploit �nite ommuniation bu�ers and the network layer transfers hunks ofdata. Let q−1 be the minimum fration of item transferred atomially. Then
o(t)−

⌊q · i(t)⌋

q
≤ τ2 (3.6)where τ2 represents the maximum number of items that an be bu�ered. Therefore the maximum admissiblevalue for o(t) at time t is:

omax(t) = τ2 +
⌊q · i(t)⌋

q
(3.7)Whenever an edge bu�er is full, a produer will blok as soon as it tries and sends a new item. From (3.4) weobtain:

omax(t)− f
(

e1(t), . . . , em(t)
)

≤ 0 (3.8)For merge streams with k soure interfaes and broadast streams with k destination interfaes, the generalonstraints (Eqs. (3.5) and (3.6) for the uniast stream) beome:merge: {i(t) ≤ ∑

k ok(t)
∑

k ok(t)− i(t) ≤ τ2k
(3.9)broadast: {∀k ik(t) ≤ o(t)

∀k o(t)− ik(t) ≤ τ2k
(3.10)For simpliity, in the previous equations the network quantization onstant q has been suppressed.3.5. Runtime Behavior. At runtime, a omponent an be seen as a dynami system. The system stateat time t is desribed by a set of state variables: i1,...,ni

(t), e1,...,ne
(t), o1,...,no

(t). Thus, the state spae P isa n = ni + ne + no dimension Eulidean spae. The dynami behavior of a omponent an be modeled by atrajetory p(t) in suh state spae.The runtime behavior of a omponent is fully spei�ed when it is oupled with hosting resoures. Aomputing resoure is modeled by w(t), the available omputing power at time t (measured in MFlop/s) anda ommuniation link is modeled by b(t), the instantaneous bandwidth at time t (measured in MByte/s).Moreover, a haraterization of the items is required. It is assumed that an item proessed by a omponentrequires l units of omputing work to be proessed (measured in MFlop) and s units of ommuniation work tobe transmitted (measured in bytes).Introduing the step funtion u(x), the number of performed (partial) omputations per time unit is:
de

dt
= u

(

min
(

⌊

i1(t)
⌋

, . . . ,
⌊

in(t)
⌋

)

− e(t)

)

·

· u
(

omax(t)− f
(

e1(t), . . . , em(t)
)

)

·
w(t)

L

(3.11)while the equations governing the number of pakets �owing in the uniast, merge and broadast streams pertime unit are, respetively:
di

dt
= u

(

⌊

o(t)
⌋

− i(t)
)

· u

(

i
max(t) − i(t)

)

·

b(t)

s
(3.12a)

di

dt
= u

(

∑

k

⌊

ok(t)
⌋

− i(t)
)

· u

(

i
max(t) − i(t)

)

·

b(t)

s
(3.12b)

dik

dt
= u

(

⌊

o(t)
⌋

− ik(t)
)

· u

(

i
max(t) − ik(t)

)

·

b(t)

s
(3.12)

268 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. ZooloNote that an important assumption has been made. The work required to perform a omputation issupposed to be independent from the values of the inoming items; their values are used just to performomputations. This is a ommon assumption in parallel data-�ow programming, but there are appliations (e.g.query proessing and data mining) that do not respet this assumption.The dynami equations provided by the model an be written in the general form:
ṗ(t) = U(p(t))α(t) (3.13)We denote with U : P → Mn,n the funtion that, for every point in the state spae, provides the ontrol partof the di�erential equations (the ones involving the step funtions), and with α(t) the resoures part (involving

w(t) and b(t)).We observe that the ontrol matrix is piee-wise onstant over non-in�nitesimal time intervals: it desendsfrom quantization in the general equations for the nodes (3.11), and in the equations for the streams (3.12).Then, the Cauhy problem an be solved onstrutively. Starting with t0 = 0, p0(t0) = 0, U0 = U(0), weindutively de�ne
pi(t) =

∫ t

ti

Uiα(τ)dτ

ti+1 = sup{t > ti|U(pi(t)) = Ui}

Ui+1 = lim
t→t+

i

U(pi(t))In this way, p(t) is de�ned as the onatenation of the piees pi|[ti,ti+1): it is a ontinuous funtion (pi(ti) =
pi+1(ti)) and piee-wise di�erentiable.4. STEADY STATE BEHAVIOR. The steady-state behavior of the system an be analysed by study-ing mean values p̄ for the rate of hange of the state variables:

p̄ = E[ṗ|[t0,∞)] =

∫ ∞

t0

ṗ(t)dt = lim
t→∞

p(t)− p(t0)

t− t0
(4.1)The hoie of t0 is arbitrary, in fat the weight of the transient phase fades away onsidering in�nite exeutions.However, to ease the reasoning about these quantities, we an interpret t0 as the end of the transient phase,e.g. when the last stage onsumes the �rst data item in a pipeline.The essential aspet to point out is that for the steady-state model the fous is on relations among thesteady-state variables, rather than in their values. In this way it is possible to abstrat from partiular targetplatforms, and apture the lass of all possible steady-state behaviors of an appliation.The steady-state behavior of a node an be modelled assoiating to eah omputation ek(t) its ativationrate

ēk = lim
t→∞

ek(t)− ek(t0)

t− t0
(4.2)Spontaneous omputations are free variables in the steady-state model. Computations that are ativated bydata reeption, instead, are subjet to the following ondition.Proposition 4.1. The steady-state exeution rate of a omputation is bound to be equal to the input rateson the input interfaes that ativate the omputation.Proof. Let k ∈ Ai, we will prove that ēi − ı̄k = 0

ēi − ı̄k = lim
t→∞

ei(t)− ei(t0)

t− t0
− lim

t→∞

ik(t)− ik(t0)

t− t0

= lim
t→∞

ei(t)− ei(t0)− ik(t) + ik(t0)

t− t0

= lim
t→∞

ei(t)− ik(t)

t− t0
−

ei(t0)− ik(t0)

t− t0

Modeling Stream Communiations in Component-based Appliations 269The numerator of the �rst addend is limited by onstants: (3.1) gives
ei(t)− ik(t) ≤ 0and (3.2) (noting that e(t) ≥ ⌊e(t)⌋) gives

ei(t)− ik(t) ≥ −τ1kwhile the numerator of the seond addend is onstant, so the limit tends to zero when the denominator tendsto in�nity.The data transmission rate ōk of an output stream will depend on the ativation rates of one or moreomputations of the node. In the previous setion, the number of data outputs has been related to the numberof performed omputations by means of a transfer funtion fk (Eqn. (3.4)).Proposition 4.2. If the transfer funtion is (asymptotially) linear
ok = fk(e1, . . . , em) = α1

ke1 + . . . αm
k em + ck(e1, . . . , em)with

lim
‖e‖→∞

‖ck(e)‖

‖e‖
= 0then a steady-state is eventually reahed, in whih the output rate is a linear ombination of the omputationrates:

ōk =
m
∑

i=1

αkiēi (4.3)Proof.
ōk = lim

t→∞

fk(e(t))− fk(e(t0))

t− t0
= lim

t→∞

αk · (e(t)− e(t0)) + c(e(t)) − c(e(t0))

t− t0
=

αk · lim
t→∞

e(t)− e(t0)

t− t0
+ lim

t→∞

c(e(t))− c(e(t0))

t− t0
= αk · ē+ 0 =

m
∑

i=1

αm
k ēiThe steady-state behavior of streams an be modelled by assoiating to eah endpoint its data transmissionrate. Balane equations relating input and output endpoints are derived.Proposition 4.3. The steady-state transmission rate at the endpoints of a stream are haraterised by thefollowing balane equations: uniast: ōA = ı̄B (4.4a)merge: ōA + ōB = ı̄C (4.4b)broadast: ōA = ı̄B = ı̄C (4.4)These equations are easily extended in the ase of more endpoints.Proof. The proof is similar to the one of Prop. 4.1, exploiting:(i) (3.5) and (3.6) for uniast,(ii) (3.9) for merge,(iii) (3.10) for broadast.The exeution rate for eah omputation, and the data transfer rate for eah input/output interfae om-pletely speify the appliation state from the point of view of its performane, therefore we will all them theperformane features of our appliation.Proposition 4.2 allows us to express output rates as linear ombinations of exeution rates, provided thatwe know the related oe�ients. These oe�ients must be provided by developers of programs/omponents

270 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. Zooloby means of some performane annotations, in order to build a performane model. Proposition 4.1 allowsus to eliminate exeution rates assoiated to data-dependent omputations. Proposition 4.3 allows us to relateoutput rates to input rates of linked modules.The performane model is therefore de�ned as an homogeneous system of simultaneous linear equations,that desribe the relations that hold in the steady-state among the performane features. The set of solutionsof the system is a vetor subspae of Rn (where n is the total number of variables, either input rates, outputrates or exeution rates); we all the dimension of the solution spae the number of degrees of freedom ofthe appliation. If this dimension is 1, then the system is ompletely determined as soon as a single value forany variable is imposed. The degenerate ase of a spae with dimension 0 implies that the only solution to thesystem is the null vetor (i. e. every variable must be zero): this means that the predited steady-state is adeadlok state, in whih no omputation or ommuniation an proeed. The number of degrees of freedom ofthe system will impat on how many onstraints must be provided in order to derive the expeted values forevery variable.Clearly, only positive values of the rates are meaningful, so we an onlude that every assignment of positivevalues for the vetor [i e o]T ∈ R
n that is a solution of the system is a possible �operation point� for the modeledappliation.The outlined approah is e�ient, in fat the simpli�ation of the simultaneous equations an be ahievedusing well known tehniques.5. Appliation of the Model. We show how the presented model an be applied to a real appliation(see Fig. 5.1), a rendering pipeline. The �rst stage requests the rendering of a sequene of senes while theseond renders eah sene (exploiting the PovRay rendering engine), interpreting a sript desribing the 3Dmodel of objets, their positions and motion. The third stage ollets images rendered by the seond one, andbuilds Groups Of Pitures (GOP), that are sent to the fourth stage, performing DivX ompression. The laststage ollets DivX ompressed piees and stores them in an AVI output �le.
Fig. 5.1. Graph of the render-enode appliationFor GOPs of 12 pitures, the performane model for our test appliation is (we eliminated exeution ratesfor data-dependent omputations):
C1e = C1o = C2i = C2o = C3i = 12 · C3o =

= 12 · C4i = 12 · C4o = 12 · C5iand has one degree of freedom.5.1. Convergene to Steady State. We start showing that the appliation behavior atually tends tosteady-state.Figure 5.2 shows performane features taken from a real exeution of the test appliation on a Blade lusteronsisting of 32 omputing elements, eah equipped with an Intel Pentium III Mobile CPU at 800MHz and1GB of RAM, interonneted by a swithed Fast Ethernet dediated network. The appliation was on�guredto exploit 20 mahines in the render omputation, and one mahine for eah remaining node.Performane features are measured as in (4.2), i. e. averaging the number of performed omputations onthe duration of the exeution. The top diagram shows the performane of the Render and the GOP Assemblernodes, whih operate on frames, while the bottom diagram shows the Enoder and Colletor nodes, whihoperate on GOPs. The similarity of the urves in the left and the right diagrams shows empirially thatProp. 4.2 is satis�ed not only at the steady-state, but also during the �nite omputation, as soon as bu�ers are�lled (urves in the same diagram are related by a fator of 1, while between the two diagrams there is a salingfator of 12).

Modeling Stream Communiations in Component-based Appliations 271

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800

b
a

n
d

w
id

th
 (

a
c
ti
v
a

ti
o

n
/s

)

frame

Rendering engine
GOP Assembler

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60

b
a
n
d
w

id
th

 (
a
c
ti
v
a
ti
o
n
/s

)

GOP

Encoder
Collector

Fig. 5.2. Convergene to steady-state of averaged performane featuresMoreover, Fig. 5.2 shows that the averaged omputation rates stabilize during the omputation, allowingus to adopt a steady-state model to approximate the atual appliation run.5.2. From Desired Performane to Resoure Requirements. Typially, if someone is faing a prob-lem by means of HPC tools, he has lear in mind some sort of performane requirement for his appliation.This an be expressed in di�erent forms, e.g. ompletion time, omputation rate, response time, et. In ourframework we express requirements as bounds on omputation rates. That is the most natural way dealingwith stream parallelism. This means that, if the problem is expressed in di�erent terms, some sort of prelim-inary transformation should be applied (e.g. study the initial transient length to relate ompletion time toomputation rate, or use the Little's Law to translate response time requirements in omputation rate ones).Suppose that we require 1 frame/s (the onstraint is expressed by C5i ≥
1

12
, beause eah input for C5 isomposed by 12 frames). Applying the performane model we derive required omputation and transfer ratesfor eah omputation and ommuniation.These values, paired with program annotations (see Tab. 5.1) on the weight of omputation or ommuni-ation (e.g. MFLOP per task/MB transferred to/from memory and message size, respetively) an be usedto derive requirements that the resoures must ful�ll in order to meet the performane requirements on theappliation.For instane, we an show the requirement for stream S2 = C2o. Sine it is required to arry 1.19MBmessages with at least rate 1/s, a link of 9.5 Mbit/s is su�ient. Likewise, the test appliation will neversale above 10 frames/s with a 100 Mbit/s network, and needs to be redesigned, if we want to reah higherperformanes.Computational requirements are handled in the same way. The performane model solution gives, foreah omputation, the minimum required exeution rate. Then we need an invertible performane model for

272 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. ZooloTable 5.1Deployment annotations for the example appliation.Component C1 C2 C3 C4 C5Proessor i686 i686 i686 i686 i686Memory (MB) 64 256 64CPU Work 3307 52Mem. Work 302 104Connetor S1 S2 S3 S4data type param pi GOP zipdata size 54B 1.19MB 14.24MB 2MBeah atomi omputation that, given the required exeution rate, produes the resoure requirements. This isessential in an exeution environment in whih resoures are not known in advane.The model presented in [22℄ suits our needs. We an assoiate to eah omputation a weight, represented bya pair of values w = (wMFLOP , wMB), speifying the number of �oating point operations (expressed in MFLOP)and the data transferred to/from main memory (expressed in MB) per ativation. Resoure power is desribedby the pair p = (pMFLOP/s, pMB/s), and exeution time is therefore estimated as t(p, w) = wMFLOP

pMFLOP/s
+

wMB

pMB/s
.This model an be employed also to �nd appropriate parallelism degree for parallel omputation nodes.We, in fat, an relate t(p, w) for an aggregate resoure p = [p1, . . . , pk] to the performane of the ode on singleresoures t(pi, w).Assuming perfet speedup, we obtain:

t(p, w) =
(

∑

i

t(pi, w)
−1

)−1In this way we an derive, for eah omputation node, mathing resoure requirements. These will onernsingle resoures for sequential nodes, and aggregate ones for parallel nodes.Results ommented. In Fig. 5.3, two mappings (top on an homogeneous luster, bottom with heterogeneousresoures) for the same onstraint are displayed. The �rst thing to note is that, even if the heterogeneous runhas more variane in ahieved bandwidth, the average bandwidth is omparable with the homogeneous one.This provides evidene that the employed performane model orretly handles heterogeneous sets of resoures,determining the orret parallelism degree. The good performane in heterogeneous run (its ompletion time iseven shorter than the one for homogeneous run) is explained by the fat that the model an math omputationrequirements with suitable resoures, i. e. shedule memory bound omputations (e.g. enoding) on mahineswith faster memory, and FPU bound ones (e.g. rendering) on mahines with faster FPU.The obtained results are as expeted: the mapping omputed using the performane model ful�lls theonstraint, at the beginning and most of the time of the appliation run. This ours beause, in order to buildour model, we sampled the ahieved performane on the �rst frames of the movie, but the appliation workloadslightly hanges with the evolution of the movie. This is evidened by the smoothed bandwidth urve, that hasthe same ourse in the two experimental settings: the workload is heavier around 100s and 300s, while it islighter in the middle and at the end.6. Conlusions and Future Work. In this work we desribed an analytial approah to map a lass ofappliations on a Grid. These appliations interat through streams of data, proessed by several autonomoussoftware omponents, either sequential or parallel. We presented a steady state performane model for theseappliations and we applied it to a ase study, a rendering pipeline of sequential and parallel omponents. Themodel was exploited to predit a program behavior at run-time. Then we showed a general methodology todevise a orret initial mapping for the appliation, driven by spei�ed QoS levels. At last, we showed the resultsof our mapping methodology with the presented appliation, and we disussed the results of the mapping andthe exeution on homogeneous and heterogeneous sets of resoures. We obtained good results in both ases.The appliation was orretly mapped and the QoS requirement respeted with a small error.Analytial [35, 19, 36, 20, 18, 29℄ and strutural performane models [25, 14, 8℄ disussed in Set. 2need the full knowledge of the target platform to derive performane measures. Therefore, to ompare re-sults of di�erent mappings, they must be evaluated multiple times. Our approah deouples the modeling

Modeling Stream Communiations in Component-based Appliations 273

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

B
a

n
d

w
id

th
 (

fr
a

m
e

/s
)

Time (s)

Test results for cluster Fuji

instantaneous bandwidth
averaged bandwidth (100s)
constraint

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

B
a

n
d

w
id

th
 (

fr
a

m
e

/s
)

Time (s)

Test results for heterogeneous configuration

instantaneous bandwidth
averaged bandwidth (100s)
constraint

Fig. 5.3. Two exeutions of the test appliation: top) homogeneous lusters of Athlons XP 2600+, down) set of heteroge-neous resoures (9 P4�2GHz, 1 Athlon XP 2800+, 1 P4�2.8GHz).of the appliation performane from the target platform, allowing us to evaluate the model one to de-rive enough information to drive the mapping proess. Trae-based approahes [34, 26℄ are used to over-ome the limitations of previously disussed approahes, but they are not ompositional. Therefore theymust be applied from srath to every new appliation, even if it is built from the same set of ompo-nents.All those models and the presented one share an assumption on the behavior of the appliations: ompu-tation exeutions must be independent from the atual values of the input set. Otherwise, two exeutions ofthe same appliation would be not omparable (this is alled ergodiity for stohasti models). For appliationsthat do not meet this requirements, the best solution is to resort to runtime adaptation.The presented approah is not perfet. The initial mapping an be onsidered a good �hint� to start theexeution of an appliation on a Grid. The dynami hanges in resoures during the exeution an not beeasily inluded in launh-time strategies. Our approah must be oupled with resheduling strategies at run-time to solve suh problems. Our future work is going in this diretion. The presented steady state modelan be exploited at run-time to adapt the behavior of omponents to hanges in resoure performanes. Inthis way, it should be possible to ful�ll the QoS requirements during the whole exeution of the applia-tion. REFERENCES[1℄ M. Aldinui, A. Petroelli, E. Pistoletti, M. Torquati, M. Vanneshi, L. Veraldi, and C. Zoolo, Dynamireon�guration of grid-aware appliations in ASSIST, in Pro. 11th Euro-Par Conferene, Lisboa, Portugal, Aug. 2005.[2℄ P. Ammirati, A. Clematis, D. D'Agostino, and V. Gianuzzi, Using a strutured programming environment for parallelremote visualization., in Pro. 10th Euro-Par Conferene, Pisa, Italy, Sept. 2004.

274 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. Zoolo[3℄ B. Babok, S. Babu, M. Datar, R. Motwani, and J. Widom, Models and issues in data stream systems, in Pro.21st ACM-SIGMOD-SIGACT-SIGART Symposium on Priniples of database systems (PODS'02), Madison, USA, 2002,pp. 1�16.[4℄ B. Bai, M. Danelutto, S. Pelagatti, and M. Vanneshi, SkIE: a heterogeneous environment for HPC appliations,Par. Comp., 25 (1999), pp. 1827�1852.[5℄ S. Balsamo, A. D. Maro, P. Inverardi, and M. Simeoni, Model-Based Performane Predition in Software Develop-ment: A Survey, IEEE Trans. on Software Engineering, 30 (2004), pp. 295�310.[6℄ C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, Sheduling Strategies for Master-Slave Tasking on Heterogeneous Proessors platforms, IEEE Trans. on Parallel and Distributed Systems, 15 (2004),pp. 319�330.[7℄ O. Beaumont, A. Legrand, L. Marhal, and Y. Robert, Steady-State Sheduling on Heterogeneous Clusters: Whyand How?, in Pro. of 18th International Parallel and Distributed Proessing Symposium (IPDPS 04) (IPDPS'04), April2004.[8℄ A. Benoit, M. Cole, S. Gilmore, and J. Hillston, Sheduling Skeleton-Based Grid Appliations Using PEPA and NWS,The Computer Journal, 48 (2005), pp. 369�378.[9℄ F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman,J. Mellor-Crummey, D. Reed, L. Torzon, and R. Wolski, The GrADS Projet: Software Support for High-LevelGrid Appliation Development, Int. J. of High Performane Computing Appliations, 15 (2001), pp. 327�344.[10℄ D. Bertsimas and D. Gamarnik, Asymptotially optimal algorithm for job shop sheduling and paket routing, Journal ofAlgorithms, 33 (1999), pp. 296�318.[11℄ M. Cole, Bringing skeletons out of the loset: a pragmati manifesto for skeletal parallel programming, Par. Comp., 30(2004), pp. 389�406.[12℄ M. Coppola and M. Vanneshi, High-Performane Data Mining with Skeleton-based Strutured Parallel Programming,Par. Comp., Sp. Iss. on Parallel Data Intensive Computing, 28 (2002), pp. 793�813.[13℄ M. Danelutto, M. Vanneshi, C. Zoolo, N. Tonellotto, R. Baraglia, T. Fagni, D. Laforenza, and A. Pa-osi, HPC Appliation exeution on Grids, in FGG: Future Generation Grid, CoreGRID, Springer, 2006.[14℄ M. Dìaz, B. Rubio, E. Soler, and J. M. Troya, SBASCO: Skeleton-based Sienti� Components, in Pro. of 12thEuromiro Conferene on Parallel, Distributed, and Network-Based Proessing (PDP'04), A Coruña, Spain, February2004.[15℄ W. Du and G. Agrawal, Language and ompiler support for adaptive appliations, in Pro. 2004 ACM/IEEE Confereneon Superomputing (SC'04), Pittsburgh, USA, Nov. 2004.[16℄ N. Dumitrasu, S. Murphy, and L. Murphy, A Methodology for Prediting the Performane of Component-Based Appli-ations, in Pro. of 8th International Workshop on Component-Oriented Programming (WCOP 03), Darmstadt, Germany,July 2003.[17℄ I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastruture, Morgan Kaufmann Pub.,July 1998.[18℄ S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo, Software performane modelling using PEPA nets, in Pro. of 4thInternational Workshop on Software and Performane (WOSP 04), New York, NY, USA, 2004, ACM Press, pp. 13�23.[19℄ K. Kant, Introdution to Computer System Performane Evaluation, MGraw-Hill, 1992.[20℄ P. J. B. King and R. Pooley, Derivation of Petri Net Performane Models from UML Spei�ations of CommuniationsSoftware, in Pro. of 11th International Conferene on Computer Performane Evaluation: Modelling Tehniques andTools (TOOLS 00), London, UK, 2000, Springer-Verlag, pp. 262�276.[21℄ H. Kuhen, A Skeleton Library, in Pro. 8th Euro-Par Conferene, London, UK, Aug. 2002.[22℄ A. Litke, A. Panagakis, A. D. Doulamis, N. D. Doulamis, T. A. Varvarigou, and E. A. Varvarigos, An advanedarhiteture for a ommerial grid infrastruture., in European Aross Grids Conferene, M. D. Dikaiakos, ed., vol. 3165of Leture Notes in Computer Siene, Springer, 2004, pp. 32�41.[23℄ L. Marhal, Y. Yang, H. Casanova, and Y. Robert, A realisti network/appliation model for sheduling divisibleloads on large-sale platforms, in Pro. of 19th International Parallel and Distributed Proessing Symposium (IPDPS 05)(IPDPS'05), April 2005.[24℄ J. Ray, N. Trebon, R. C. Armstrong, S. Shende, and A. D. Malony, Performane Measurement and Modeling ofComponent Appliations in a High Performane Computing Environment: A Case Study, in Pro. of 18th InternationalParallel and Distributed Proessing Symposium (IPDPS 04), Santa Fé, USA, April 2004.[25℄ J. Shopf, Strutural predition models for high-performane distributed appliations, in Pro. of the Cluster ComputingConferene (CCC'97), Atlanta, USA, Marh 1997.[26℄ L. J. Senger, M. J. Santana, and R. H. C. Santana, Using Runtime Measurements and Historial Traes for AquiringKnowledge in Parallel Appliations, in Pro. of the 2004 International Conferene on Computational Siene (ICCS 04),M. Bubak, G. D. van Albada, P. M. Sloot, and J. J. Dongarra, eds., vol. 3036 of Leture Notes in Computer Siene,Kraków, Poland, June 2004, Springer Verlag, pp. 661�665.[27℄ M. Sitaraman, G. Kulzyki, J. Krone, W. F. Ogden, and A. L. N. Reddy, Performane spei�ation of softwareomponents, in Pro. of the 2001 Symposium on Software Reusability (SSR 01), Toronto, Ontario, Canada, 2001, ACMPress, pp. 3�10.[28℄ C. U. Smith, Performane Engineering of Software Systems, Addison-Wesley, 1990.[29℄ B. Spitznagel and D. Garlan, Arhiteture-Based Performane Analysis, in Pro. of 10th International Conferene onSoftware Engineering and Knowledge Engineering (SEKE 98), Y. Deng and M. Gerken, eds., 1998, pp. 146�151.[30℄ N. Trebon, A. Morris, J. Ray, S. Shende, and A. Malony, Performane Modeling of Component Assemblies withTAU, in Pro.of CompFrame 2005, Atlanta, USA, June 2005.[31℄ S. Vadhiyar and J. Dongarra, Self Adaptability in Grid Computing, Conurrreny and Computation: Pratie andExperiene, 17 (2005), pp. 235�257.

Modeling Stream Communiations in Component-based Appliations 275[32℄ A. J. C. van Gemund, Symboli Performane Modeling of Parallel Systems, IEEE Trans. on Parallel and DistributedSystems, 14 (2003), pp. 154�165.[33℄ M. Vanneshi, The programming model of ASSIST, an environment for parallel and distributed portable appliations, Par.Comp., 28 (2002), pp. 1709�1732.[34℄ F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed, Performane Contrats: Prediting and Monitoring GridAppliation Behavior, in Pro. of 2nd International Workshop on Grid Computing (GRID 01), London, UK, 2001,Springer-Verlag, pp. 154�165.[35℄ L. G. Williams and C. U. Smith, PASA(SM): An Arhitetural Approah to Fixing Software Performane Problems, inPro. of 28th International Computer Measurement Group Conferene, Reno, Nevada, USA, 2002, pp. 307�320.[36℄ C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar, The Stohasti Rendezvous Network Model forPerformane of Synhronous Client-Server-like Distributed Software, IEEE Trans. on Computer, 44 (1995), pp. 20�34.[37℄ J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy, Performane modeling and predition of enterprise javabeans withlayered queuing network templates, in Pro. of the 2005 Conferene on Spei�ation and Veri�ation of Component-basedSystems (SAVCBS 05), New York, NY, USA, 2005, ACM Press.[38℄ A. Zhang, Y. Song, and M. Mielke, NetMedia: Streaming Multimedia Presentations in Distributed Environments, IEEEMultiMedia, 9 (2002), pp. 56�73.Edited by: Pasqua D'Ambra, Daniela di Sera�no, Mario Rosario Guarraino, Franesa PerlaReeived: June 2007Aepted: November 2008

