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Abstract Machine-learnt models based on additive en-

sembles of regression trees are currently deemed the

best solution to address complex classification, regres-

sion, and ranking tasks. These models are computation-

ally demanding: indeed, to compute the final prediction

the whole ensemble must be traversed by accumulating

the contributions of all its trees. In particular, traversal

cost impacts applications where the number of candi-

date items is large, the time budget available to apply

the learnt model to them is limited, and the users’ ex-

pectations in terms of quality-of-service is high. Docu-

ment ranking in web search, where sub-optimal rank-

ing models are deployed to find a proper trade-off be-

tween efficiency and effectiveness of query answering,

is probably the most typical example of this challeng-

ing issue. This paper investigates multi/many-core par-

allelization strategies for traversing large ensembles of

regression trees, that tip the balance towards machine-
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learnt models that are, at the same time, effective, fast,

and scalable.

1 Introduction

Recent advances in Machine Learning (ML) allow to

model phenomena and solve problems that were previ-

ously too complex for computers to handle. This radical

change has opened new horizons for improving quality,

speed, and accuracy of actionable solutions for complex

problems in many diverse application domains. How-

ever, the complexity of machine-learnt models and their

widespread adoption require novel algorithmic solutions

aimed at rendering fast and scalable both their train-

ing and use. Unlike the main stream of research on effi-

ciency, which aims at making faster the off-line training

process, this paper focuses on speeding-up the online

application of a particular kind of learnt ML models,

i.e., those based on additive ensembles of decision trees.

These models, generated by boosting meta-algorithms

that iteratively learn simple decision trees by incremen-

tally optimizing some given loss function, have been

shown to be the most general and competitive solutions

for several “difficult” tasks.

For example, consider the Yahoo! Learning to Rank

Challange [1], which fostered the development of sev-

eral Learning-to-Rank (LtR) algorithms aimed at ad-

dressing the fundamental problem of ranking items ac-

cording to their relevance to queries [10,11]. The most

robust and effective ranking models turned out to be

those based on ensembles of regression trees learnt with

the GBRT [12] and λ-MART [13] algorithms. Indeed,

within this challenge, all top competitors leveraged de-

cision trees and ensemble methods, and the winner de-

ployed a total of 24,000 regression trees in an ensem-
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ble model. Another notable example regards Yandex,

the main Russian search engine, which repeatedly an-

nounced the exploitation of very large tree-based rank-

ing models within their systems, and solutions based

on multi/many-core parallelism to speed-up both their

training and testing [2,?]. Also Amazon uses more than

100 tree-based models, one model per category per site,

for ranking the products returned as answer to user

queries [4]. Finally, ensembles of regression trees are

part of production-level pipelines for ads clickthrough

rate predictions [3], and are the most common choice

in solutions for ML competitions, such as Kaggle1.

In large-scale production systems, complex ensem-

bles with thousands of trees have to be deployed to

achieve high quality results meeting user satisfaction.

In addition, due to the incoming rate of requests and

quality-of-service expectations, the traversal of such tree

ensembles has to be fast, and must complete within

small time budgets. All these requirements are very

challenging to fulfill, and this paper exactly focuses on

techniques for speeding-up the traversal of large tree

ensemble by exploiting parallelism.

Without loss of generality, in the following we con-

centrate on the WSE scenario, and adopt the LtR ter-

minology to discuss the state-of-the-art and investigate

parallel algorithms to traverse large tree-based ensem-

ble models. However, all algorithms and processing strate-

gies discussed can be applied “as is” in other scenarios,

different from document ranking in WSE, since they

regard the general problem of traversing large forests

of binary trees, given an item represented as a feature

vector. Large scale WSEs commonly exploit LtR solu-

tions within a multi-stage ranking architecture [5,6,7,8,

9] to realize their top-k retrieval systems. This architec-

ture design aims to find a trade-off between effective-

ness and efficiency, by applying increasingly accurate

and computationally expensive models at each stage,

where each stage re-ranks candidate items coming from

the previous stage by also pruning some of them. Con-

sider now a stage of this architecture that ranks items

by applying an additive ensemble of regression trees.

Given the input instance represented by a feature vec-

tor x, the ranking model predicts a relevance score s(x)

(observed value) that is eventually used to rank the set

of candidate documents. The internal (or branching)

nodes in all the trees of the ensemble are associated

with a Boolean test over the value of a specific fea-

ture. Each leaf node stores instead the tree prediction,

representing the potential contribution of the tree to

the final document score. The scoring of x requires the

traversal of all the trees in the ensemble to devise all

the tree prediction and it is computed as their weighted

1 https://www.kaggle.com/competitions

sum. Typical figures [1] regarding the complexity of a

tree-based ranker deployed on the last stage of a WSE

ranking pipeline are reported in Table 1.

Table 1: Typical complexity of WSE document ranking

with LtR tree ensembles.

Dimension Number

Trees 1, 000− 20, 000
Leaves per tree 4− 64
Documents scored per query 3, 000− 10, 000
Features per query-document pair 100− 1, 000

In this paper we investigate multi/many-core par-

allelization strategies making the traversal of large en-

semble of trees fast and scalable. In particular, we inves-

tigate diverse strategies to parallelize QuickScorer

(QS), the state-of-the-art algorithm for the traversal

of ensembles of binary decision trees [14,17]. The goal

is to allow the deployments of large and complex ML

models, able to produce very accurate and precise rank-

ing of a set of documents within a small time budget.

Orthogonally, when the desired level of accuracy is al-

ready granted by a given model, we can rely on a par-

allel scorer to reduce latency and increase throughput.

We designed several parallel versions of QS, aiming to

assess the various opportunities offered by modern ar-

chitectures. Specifically, we deal with: (i) processor in-

structions set extensions to vectorize code, (ii) multi-

core architecture for shared memory multi-threading,

and (iii) many-core architecture of modern graphic cards

(GPUs) exploiting massive data parallelism.

We report on extensive experiments conducted on

three publicly available LtR datasets, namely the MSN,

the Yahoo LETOR challenge, and the Istella datasets.

In the experiments we investigate strengths and limita-

tions of the proposed parallel algorithms. Although the

tested datasets that are commonly used by the scien-

tific community to evaluate LtR solutions, the results

achieved and the lessons learnt are completely general

and can be exported without modifications to other use

cases characterized by similar efficiency and effective-

ness requirements – for instance, product search and

recommendation, social media filtering and ranking, on-

line advertisement, classification or regression tasks on

big data. Moreover, even if the learnt models used in

the experiments are additive ensembles of regression

trees, the same techniques discussed in the paper can

be exploited for other tree-based ensembles, like ran-

dom forests used for classification, regression, or other

tasks.

https://www.kaggle.com/competitions
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The rest of this paper is structured as follows. Sec-

tion 2 presents the proposals discussed in the litera-

ture for speeding-up the scoring time of LtR rankers

based on ensembles of regression trees. We also give

some background on the features of modern CPUs rel-

evant for discussing the state of the art. The last part

of the related work section presents in a concise way

our algorithm QS, whose parallelization is discussed

in the following. Section 3 defines the possible strate-

gies to parallelize QS. Then, in Section 4 we present

a comprehensive analysis regarding the use of single-

instruction multiple-data (SIMD) extended instruction

sets to vectorize QS. Section 5 deals with multi-core

shared memory NUMA architecture, and thus discusses

how to combine SIMD and multi-threading to paral-

lelize QS. In Section 6, we also explore the possible

strategies to exploit many-core GPUs to speed-up QS

by massive parallelism. Section 7 reports on the results

of our comprehensive experimental evaluation. Finally,

we conclude our investigation in Section 8.

2 Related work

The IR community has recently investigated possible

strategies to reduce the scoring time of the most ef-

fective LtR rankers based on ensembles of regression

trees [6,7,16,14,17]. These strategies can be roughly

divided into two orthogonal groups: tree removal and

algorithm optimizations.

Tree removal strategies focus on boosting the scor-

ing time by limiting the number of trees processed, trad-

ing off effectiveness for efficiency. Cambazoglu et al. [7]

propose to early terminate the trees traversal, on a sin-

gle query-document basis, as soon as it becomes clear

that the score contributions of the remaining trees will

be low, while Lucchese et al. [18] propose to statically

remove a subset of low-contributing trees in the en-

semble and re-train the weights of the remaining ones

according to a given effectiveness measure.

Algorithmic optimizations, although do not change

the time complexity, aim to better exploit the under-

lying CPU architecture, in particular instruction-level

parallelism (ILP), data-level parallelism (DLP) and mem-

ory hierarchies [19]. Modern architectures mainly real-

ize ILP through pipelines, where a pipeline is a chain

of functional stages able to execute in parallel distinct

parts of different instructions. Indeed, each computa-

tional core (processor) of a modern CPU includes mul-

tiple pipelines and adopts a superscalar design, i.e., an

architecture where multiple instructions can be simulta-

neously dispatched to the various processor’s pipelines.

Note that although the instructions of a sequential pro-

gram should be issued in-order, thus following the se-

quential flow of control, a superscalar processor specu-

latively inspect a sequential program to detect indepen-

dent instructions to execute in parallel, to fully exploit

the ILP capability of the processor. This speculative

technique dynamically issues and executes instructions

out-of-order, thus modifying the original control flow of

a sequential program. The key factors to fully exploit

such processors is thus to have sequential programs that

include many independent instructions that can exe-

cuted in any order and thus in parallel. A data flow

dependency between a pair of consecutive instructions

prevents the parallel dispatching of these instructions.

In addition, another source of inefficiency for super-

scalar processors is the presence of control dependen-

cies, caused by branch instructions that determine the

next instruction to execute. Modern processors exploit

effective branch predictors, which guess the branch di-

rections (taken/not-taken) to prefetch and execute the

correct next instruction. For example, branches used to

implement loops are easily predictable, as a loop body

is likely re-executed many times except for exit con-

dition. Finally, the current technological trend depicts

a scenario in which we observe a continuous widening

of the processor-memory gap, due a faster pace of in-

crease in processor speed than in RAM memory latency.

Modern CPUs try to fill this gap by adopting very com-

plex cache memory hierarchies. To take advantage of

the multiple levels of caches present in such complex

memory hierarchies, the layout of data structures and

the associated access pattern have to be designed so as

to exploit spatial and temporal locality, by also reduc-

ing cache misses.

Coming back to the issues of exploiting modern CPUs
to accelerate scoring with forests of binary regression

trees, the algorithm VPRED [6] stores such trees as

binary heaps implemented as linear arrays, and substi-

tutes the branches, needed to select the traversal path

of a tree in a traditional code, with a sequence of in-

structions that use the results of each Boolean test to

identify the index of the next heap cell to visit. Since the

directions of branches employed by a traditional tree

traversal code are low predictable, this optimization

tries to remove the problem at the root, by completely

removing conditional statements. However, this tech-

nique, aiming to transform control dependencies into

data dependencies, is not enough to maintain busy the

multiple pipelines of a processor. Thus, VPRED scores

multiple query-document pairs on the same tree, and

this allows a processor to identify and issue in parallel

independent instructions working on distinct pairs. The

memory footprint of VPRED is not so large, since it

accesses a tree of the ensemble at a time to score groups

of documents. Finally, Tang et al. [16] propose a cache-
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conscious layout scheme for trees data, with up to 50%

improvement over VPRED.

The QuickScorer (QS) algorithm [14,17] restruc-

tures the data layout and the processing of regression

trees to leverage modern memory hierarchies and re-

duce the branch prediction errors to limit the control

hazards. Experimental results show that QS is up to

6.6× faster than VPRED. In addition, QS accesses

data structures with high locality, since the tree forest

traversals, repeated for each query-document pair, is

transformed into a scan of linear arrays. Finally, data

structures and data access are re-organized accordingly

to reduce cache misses.

As our proposals exactly parallelize QuickScorer,

we will use the next subsection to describe this algo-

rithm in details.

2.1 QuickScorer

Let us denote with T = {T0, T1, . . .} an ensemble of bi-

nary decision trees. Each internal (or branching) node

of Th is associated with a Boolean test over a specific

feature fφ ∈ F , and a constant threshold γ ∈ R, where

tests are of the form x[φ] ≤ γ. Algorithm 1 illustrates

the QS [17] algorithm for the fast traversal of the en-

semble. One of the most important feature of QS is

that it computes s(x) by only identifying the branching

nodes whose tests evaluate to false, called false nodes.

For each false node detected in Th ∈ T , QS updates

a bitvector associated with Th, thus storing informa-

tion that is finally exploited to identify the exit leaf

of Th that contributes to the final score s(x). To this

end, QS maintains for each tree Th ∈ T a bitvector

leafindexes[h], made of Λ bits, one per leaf. Initially,

every bit in leafindexes[h] is set to 1. Moreover,

each branching node is associated with a pre-computed

bitvector mask, still of Λ bits, identifying the set of un-

reachable leaves of Th in case the corresponding test

evaluates to false. To precompute these bitvectors, we

consider that the left branch is taken if the binary test

performed by a branching node succeeds or, equiva-

lently, the right branch is taken if a branching node

is recognized as false. Whenever a false node is identi-

fied, the set of unreachable leaves leafindexes[h] is

updated through a logical AND (∧) with mask. Eventu-

ally, the leftmost bit set in leafindexes[h] identifies

the leaf corresponding to the score contribution of Th,

stored in the lookup table leafvalues.

To efficiently identify all the false nodes in the en-

semble, QS processes the branching nodes of all the

trees feature by feature. Specifically, for each feature fφ,

QS builds a list Nφ of tuples (γ, mask, h), where γ is the

Algorithm 1: QuickScorer

1 QuickScorer(x,T ):
2 foreach Th ∈ T do

3 leafindexes[h]← 11 . . . 11

4 foreach fφ ∈ F do // Mask Computation

5 foreach (γ, mask, h) ∈ Nφ in asc. order of γ do

6 if x[φ] > γ then

7 leafindexes[h]← leafindexes[h] ∧
mask

8 else
9 break

10 score← 0
11 foreach Th ∈ T do // Score Computation

12 j ← index of leftmost bit set to 1 of
leafindexes[h]

13 l← h · Λ+ j

14 score← score+ leafvalues[l]

15 return score

predicate threshold of a branching node of tree Th per-

forming a test over the feature fφ of the input instance

x, and mask is the pre-computed mask that identifies

the leaves of Th that are un-reacheable when the asso-

ciated test evaluates to false. The data structure layout

is illustrated in Fig. 1. Hereinafter, we refer to the tu-

ples (γ, mask, h) and to the leafvalues as the model

data structure. Note that the model data structure is

precomputed off-line and accessed in read-only mode,

as opposed to the leafindexes which are document

dependent and updated at runtime.

Nφ is sorted in ascending order of γ. Hence, when
processing Nφ sequentially, as soon as a test evaluates

to true, i.e., x[φ] ≤ γ, the remaining occurrences surely

evaluate to true as well, and their evaluation is thus

safely skipped.

We call mask computation the first step of the algo-

rithm during which all the bitvectors leafindexes[h]

are updated, and score computation the second step

where such bitvectors are used to retrieve tree predic-

tions.

To make efficient and cache-friendly the access to

the QS data structure we adopt the Struct of Arrays

(SoA) data layout rather than a classic Array of Structs

(AoS) [20]. According to the SoA layout, the tuples

(γ, mask, h) are stored in three independent arrays, hence

solving possible alignment issues due to different sizes of

the fields of each tuple. Moreover, the SoA layout sim-

plifies the data parallel implementations, in particular

the GPU-based parallel code, as discussed in Sec. 6.
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Fig. 1: Data layout example of the QS algorithm.

3 Parallelization strategies for QuickScorer

Given a set of query-document pairs, we want to inves-

tigate the following scoring parallelization strategies:

• Inter-document parallelism: multiple documents are

evaluated in parallel.

• Intra-document parallelism: multiple features, trees,

or nodes are evaluated in parallel.

• Combining inter-document and intra-document par-

allelism.

In the following paragraphs we introduce in detail each

strategy.

Inter-document parallelism. The rationale behind

this strategy stems from the observation that each doc-

ument can be scored independently. Inter-document par-

allelism takes advantage of this property, and employs

multiple threads to score simultaneously multiple docu-

ments. Although the latency associated with each docu-

ment scoring does not improve over the sequential case,

we observe that inter-document parallelism ensures bet-

ter throughput in terms of number of documents scored

per time unit. To realize this strategy, the data struc-

ture associated with the model must be shared among

all the available threads, while each document must be

associated with its own copy of leafindexes.

Intra-document parallelism. The key idea behind

this strategy is to partition the scoring of a single doc-

ument into subtasks that can be executed in parallel.

Consequently, intra-document parallelization aims at

reducing the scoring latency of each document, which

in turn has the effect of increasing the throughput.

In QS subtasks can be naturally obtained by de-

composing the work performed over features; more pre-

cisely, each subtask consists in processing the list of

tuples (γ, mask, h) ∈ Nφ associated with a single fea-

ture fφ, and updating the corresponding leafindexes.

Note that different tuples inNφ, related to different fea-

tures fφ, may be associated with the same tree h. As a

consequence, updating leafindexes may generate race

conditions that have to be properly managed.

Depending on the targeted architecture, race condi-

tions can be generally managed in two different ways.

On the one hand, one can eliminate race conditions

by creating one copy of leafindexes per subtask, pro-

vided that increasing the memory footprint does not

represent an issue; this strategy, however, incurs in the

additional cost of having to perform a final merge of

the various leafindexes – this can be achieved by log-

ical AND operations. On the other hand, if memory

occupancy represents a major concern (such as in the

case of GPUs) leafindexes must be shared across the

subtasks, thus requiring the use of atomic updates to

manage race conditions.

Combining inter-document and intra-document

parallelism. This strategy exploits the combined use

of massive and fine-grained parallelism. Indeed, the idea

is to process p1 documents independently in parallel

(inter-document parallelism) by using p2 threads to score

each document (intra-document parallelism), for a to-

tal of p = p1 · p2 threads.

All the above strategies have room for several per-

formance improvements that attempt to leverage task

granularity and model partitioning.

Given a workload split in independent tasks among

a pool of concurrent workers, task granularity impacts

load balancing : in general, the smaller the granularity

and the larger the number of tasks, the better the re-
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sulting balancing. For each of the parallelization strate-

gies introduced above, task granularity can be oppor-

tunely tuned from the finest to the coarsest level; in

the inter-document case, the finest granularity can be

achieved by associating each task with a single docu-

ment, while in the intra-document case the finest gran-

ularity is achieved by associating each task with a single

feature. In both cases, granularity can be simply in-

creased by assigning multiple documents (features) to

individual task.

As modern CPU and GPU architectures feature com-

plex memory hierarchies, devising algorithms with a re-

duced memory footprint may provide remarkable bene-

fits: indeed, smaller data structures, accessed with high

spatial and temporal locality, easily fit into the smaller –

but faster – cache memories. Large tree ensembles, how-

ever, may be too large to fit. Consequently, ensembles

must be partitioned in blocks of τ trees, such that the

data structure of each block fits into the cache mem-

ory. The final score of a document then becomes the

sum of the scores produced by the various blocks. In

this context we note that inter-document parallelism

improves the temporal locality of memory accesses, as

smaller blocks of the model are used to score the docu-

ments; however, the very same parallelism requires mul-

tiple copies of leafindexes, thus increasing the mem-

ory footprint of the algorithm. Overall, making the best

use of cache memories requires to find a proper trade-

off between the size of tree blocks and the number of

documents evaluated in parallel.

4 Vectorized QuickScorer

In this section we discuss V-QuickScorer (vQS)2, an

enhanced single-threaded QS that exploits CPU vector

extensions to boost the efficient traversing of additive

ensembles of regression trees. The results in this section

were introduced preliminarly in [21].

Modern CPUs have extended instruction sets and

wide registers to realize Data-Level Parallelism (DLP).

These instructions permit the parallel execution of the

same operation on different data (a.k.a., single instruc-

tion multiple data (SIMD) paradigm).

Streaming SIMD Extensions (SSE) and Advanced

Vector Extensions (AVX) are sets of instructions ex-

ploiting wide registers of 128 and 256 bits. A single

SIMD instruction performs parallel operations on sim-

ple data types, e.g., a 128 bit register can manage four

single precision or two double precision floats simulta-

neously. Note that Intel’s Xeon Phi processor provides

2 Source code: https://github.com/hpclab/vectorized-quickscorer

512 bits register, and such wide registers are planned to

be included in next-generation mainstream processors.

Given the need of scoring multiple documents at

the same time for a given query, inter-document par-

allelism is the most natural source of parallelism that

can profit from the exploitation of SIMD instructions,

although the number of documents scored in parallel is

bounded by the SIMD capabilities of the specific pro-

cessor, which is equal to 8 in our case.

Both the mask computation and score computation

steps of QS can be engineered to take advantage of

SIMD instructions and registers. During the first step,

multiple documents can be tested against a given node

predicate, and their leafindexes[h] updated in par-

allel. Similarly, the scores of multiple documents can be

computed simultaneously during the second step. The

data structure leafindexes used to encode the exit

leaves must be replicated to allow multiple documents

to be scored simultaneously.

In the following we adopt a notation similar to Intel

Intrinsics3 for specifying SIMD instructions. For each

instruction, we have (i) a prefix mm or mm256 stat-

ing if it operates on either 128 or 256 bits registers; (ii)

the name of the performed operation; (iii) a suffix in-

dicating types and number of base operands packed in

registers, where for example ps and pd stand for 32

and 64 bit floats, respectively. For instance,
−→c = mm cmpgt ps(−→a ,−→b )

corresponds to a SIMD instruction that works on two

registers −→a and
−→
b of 128 bits, each storing a sequence

of four single precision floats, and performing four greater

than comparisons in parallel. The result is stored to

another 128-bit register −→c , which contains four 32-bits

sequences of 1s or 0s, depending on the test outcome of

the four comparisons. In the following, we use the no-

tation −→c ≡ 〈c3, c2, c1, c0〉 to refer to the four elements

of a SIMD register. We also use −→c3:2 and −→c1:0 to de-

note respectively the most and least significant pairs of

elements in −→c .

The specific optimizations used by vQS depend on

both SIMD register width and maximum number of

leaves Λ in the ensemble. We first discuss how vQS

exploits 128 bit registers when Λ = 32 (Sec. 4.1), then

we introduce 256 bit registers (Sec. 4.2). Finally, we

highlight the main differences for the case Λ = 64 when

either 128 or 256 bit registers are exploited (Sec. 4.3).

4.1 vQS with 128 bits registers and 32 leaves

We first discuss the mask computation step of vQS, see

Alg. 2. As QS, vQS identifies false nodes by processing

3 https://software.intel.com/sites/landingpage/IntrinsicsGuide

https://github.com/hpclab/vectorized-quickscorer
https://software.intel.com/sites/landingpage/IntrinsicsGuide
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Algorithm 2: vQS (128 bits registers, Λ =

32)

1 V-QuickScorer( {xi}i=0,1,2,3, T , scores3:0):
2 foreach Th ∈ T do
3 leafindexes[h]← 11 . . . 11

4 foreach fφ ∈ F do // Mask Computation Step
5 foreach (γ, mask, h) ∈ Nφ in asc. order of γ do
6

−→γ ← mm set1 ps(γ)

7
−→x ← mm set ps(x3[φ],x2[φ],x1[φ],x0[φ])

8
−→c ← mm cmpgt ps(−→x ,−→γ )

9 if ¬( mm test all zeros(−→c ,−→c )) then

10
−→
b ← mm load ps(leafindexes3:0[h])

11
−→m ← mm set1 ps(mask[n])

12
−→y ← mm andnot ps(−→m,−→c )

13
−→y ← mm andnot ps(−→y ,−→b )

14 mm store ps(leafindex3:0[h],
−→y )

15 else
16 break

17
−−→s1:0 ← mm set1 pd(0) // Score Computation Step

18
−−→s3:2 ← mm set1 pd(0)

19 foreach Th ∈ T do
20 ∀i = 3:0 : ji ← index leftmost 1 bit of leafindexi[h]
21 ∀i = 3:0 : li ← h · Λ+ ji
22

−−→v1:0 ← mm set pd(leafvalues[l1], leafvalues[l0])

23
−−→v3:2 ← mm set pd(leafvalues[l3], leafvalues[l2])

24
−−→s1:0 ← mm add pd(−−→s1:0,−−→v1:0)

25
−−→s3:2 ← mm add pd(−−→s3:2,−−→v3:2)

26 mm store pd(−−→s1:0, scores1:0)
27 mm store pd(−−→s3:2, scores3:2)

feature thresholds in ascending order. vQS exploits 128

bits register to compare multiple documents simultane-

ously against each feature threshold. To this end, the

input of vQS is a set of 4 feature vectors {xi}i=0,1,2,3.

Since document features are stored as single preci-

sion floats, we have a first register −→γ storing 4 copies of

the same test threshold γ, and a second register −→x stor-

ing the features {xi[φ]}i=0,1,2,3 of the 4 input instances

(lines 6-7). A single SIMD instruction is used to test

the feature values of these four documents against the

threshold (line 8). If at least one test evaluates to false,

i.e., vQS finds at least one false node, leafindexes is

updated and the next threshold of the same feature is

processed. Otherwise, vQS processes the next feature.

Unlike QS, we need to verify the true condition

for all the 4 documents, thus introducing some over-

head when vQS performs useless tests on some of the

4 documents. The update of leafindexes should oc-

cur only for the feature vector xi for which xi[φ] >

γ. Since SSE-4.2 does not support masked/predicated

SIMD instructions, to avoid conditional branches vQS

implements the update with two bitwise operations. Let

leafindexesi[h] be a 32 bits vector (Λ = 32), relative

to tree Th and associated with document xi. Let vari-

able ci store a sequence of 1-only or 0-only 32 bits,

depending on the outcome of the test xi[φ] > γ. We

can rewrite the update as:

leafindexesi[h]← (mask[n] ∨ ¬ci) ∧ leafindexesi[h]

where the bitwise logical or has the effect of leaving

mask[n] unaltered when xi[φ] > γ. We can re-write the

above expression by applying the De Morgan law to

implement the update rule with two executions of the

SIMD function andnot(x, y) = ¬x ∧ y.

The layout of leafindexes is tree-wise, i.e., given

a tree Th the bitvectors leafindexesi[h] of the four xi
are stored contiguously in memory. As shown in Alg. 2

(lines 10–14), this allows us to load the four bitvec-

tors with a single 128-bit load instruction, and to ap-

ply them the two SIMD andnot instructions. Indeed,

first the four leafindexes3:0[h] are loaded to register−→
b and mask[n] is replicated into −→m. After composing
−→m, −→c and

−→
b , the updated leafindex3:0[h] are finally

copied back to memory.

The score computation step is also parallelized (see

Alg. 2, from line 17). To provide the required precision,

tree predictions are stored as double precision float val-

ues (64 bits), but this implies that only 2 document

scores can be processed simultaneously using 128 bits

registers. Thus, vQS uses two registers, namely −→s1:0 and
−→s3:2, to maintain the scores of the 4 documents. For each

tree h, the predicted partial scores relative to the 4 in-

put instances {xi}i=0,1,2,3 are similarly stored to −−→v1:0
and −−→v3:2, and added up to update the final document

scores. Finally, the computed scores for the 4 documents

are copied to scores3:0.

4.2 vQS with 256 bits registers and 32 leaves

With registers of 256 bits, we can increase the paral-

lelism degree of vQS. Trivially, 8 document features

tests can be performed simultaneously instead of 4, and

4 document scores updated in parallel instead of 2. We

do not report the pseudocode for document feature test-

ing and document scores calculation, as they simply re-

quire to adopt the 256 bits version of the instructions

illustrated above.

More interestingly, AVX-2 also provides additional

instructions, such as mm256 maskstore ps: it stores a

256 bits register to memory on the basis of a mask that

enables/disables the copies of sub-groups of 32 bits.

This makes it possible to conditionally update each of

the 8 elements of leafindexes7:0 (or to leave it un-

changed), depending on the outcomes of the 8 docu-

ment tests which are stored in −→c . Lines 12–14 of Alg. 2

are replaced as follows, where the vector variables in-

volved are now 256 bits registers:
−→y ← mm256 and ps(−→m,−→b )

mm256 maskstore ps(leafindexs7:0[h],−→c ,−→y )
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4.3 vQS with 64 leaves

Increasing the maximum number of tree leaves Λ im-

pacts on the size of the arrays leafindexes and mask,

as each element they store is Λ bits wide. As a conse-

quence, the number of elements that can be processed

simultaneously in a register decreases. Note that −→c
stores each of the threshold test results as a string of 32

bits. Conversely, now the elements of −→m and
−→
b are 64

bits wide. Depending on the register size, this mismatch

is handled differently.

For 128 bits registers, let −→c ≡ 〈c3, c2, c1, c0〉 be the

outcomes of the four comparisons against a threshold

γ. For the subsequent update of the 64 bits masks, vQS

requires to process −→c in order to obtain two variables,

storing only two comparison outcomes of 64 bits each.

To this end, we use the following two unpacking instruc-

tions, working on the low and high half of −→c , respec-

tively.

〈c1, c1, c0, c0〉 ≡ mm unpacklo ps(−→c ,−→c )

〈c3, c3, c2, c2〉 ≡ mm unpacklhi ps(−→c ,−→c )

Once prepared these two result variables, they are used

in the subsequent andnot operations, as in Alg. 2. The

only difference is that the code from line 12 to 14 must

be repeated twice, one for updating the two copies of

leafindexes associated with the former pair of documents,

and the other for the latter pair.

When using 256 bits registers, vQS performs 8 tests

in parallel, and updates the 8 copies of leafindexes by

exploiting two blocks of SIMD instruction, each per-

forming 4 operations in parallel on the 64 bits data

structures. Again, given−→c ≡ 〈c7, c6, . . . , c0〉, vQS needs

two vectors with the following layout:
〈c3, c3, c2, c2, c1, c1, c0, c0〉 and

〈c7, c7, c6, c6, c5, c5, c4, c4〉.
Unfortunately, the 256 bits versions of the unpacking

instructions work by considering each 256 bits regis-

ter as two 128 bits lanes, and thus pick the least/most

significant 64 bits from each lane. Hence, vQS adopts

a different layout for −→c to apply the above unpacking

instructions. vQS loads the 8 features of −→x , to be com-

pared with the threshold γ, in the following interleaved

order:
−→x ← mm256 set ps( x7[φ],x6[φ],x3[φ],x2[φ],

x5[φ],x4[φ],x1[φ],x0[φ] )

This new 256 bits instruction replaces line 7 of Alg. 2.

5 Multi-threading QuickScorer

The SIMD-based parallelization strategies presented in

Section 4 are restricted within a single thread, run-

ning on a single CPU core. Since modern CPUs are

multiprocessors providing several cores, it is interest-

ing to investigate a multi-threading parallelization of

QuickScorer. Indeed, we can mix SIMD and MIMD

parallelism by running multiple threads, where each

thread exploits inter-document fine-grained SIMD par-

allelism as discussed in Section 4. We call vQS MT,

(Vectorized QuickScorer Multi-Threading) this hy-

brid parallel implementation of QuickScorer.

Even in the case of multi-threading parallelism, we

have different possible parallelization strategies, either

inter-, intra-document, or a mixed one. From prelimi-

nary tests, we found that inter-document is always the

best performing strategy. This is due to the large num-

ber of documents to score per query (from hundreds

to thousands in real settings) and the limited num-

ber of cores of multicores/multiprocessors (from tens

to hundred in common configurations). So we adopt

the same inter-document strategy among the various

threads and within each single thread. For example, a

multicore CPU with 8 cores, with vector registers of 128

bits, may run 8 threads, where each thread scores 4 doc-

uments in parallel, for a total of 8× 4 = 32 documents

scored in parallel.

In our study, we also consider the complexity of the

shared-memory architecture of modern multiprocessor.

In particular, such system may include several multi-

core CPUs, also called sockets or nodes, all accessing

the same shared memory according to a NUMA (Non-

Uniform Memory Access) scheme. To increase memory

bandwith, the shared memory in a NUMA scheme is

indeed distributed to each node, namely a multicore

CPU, thus introducing two different speeds for access-

ing the shared memory: a fast access to local one and

a slower access to remote one. This means that migrat-

ing a thread from a multicore CPU to another may

hinder performance, and thus a good practice is to re-

strict threads to continue to run on the same multicore

CPU where they were created.

We implemented the multi-threaded version of QS

by using OpenMP [22], an API that supports multi-

platform and multi-language shared memory multipro-

cessing programming. To realize inter-document par-

allelism with OpenMP, it is enough to denote as a

parallel for the loop that iterates over the docu-

ments to score. In more details, a single-thread pro-

gram calls Algorithm 2 from within a for, thus scor-

ing 4 documents at a time (8 documents, when 256 bit

SIMD instructions are exploited). Using the directives

of OpenMP, the output and temporary data structures

used to score each group of 4 (8) documents are de-

clared private, and thus are allocated on a per-thread

basis. Specifically, such private data structures are the
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leafindexes3:0 (leafindexes7:0) bitmask arrays, and

the final scores3:0 (scores7:0) accumulators.

A final remark concerns the lower levels of cache

equipping each multicore CPU, and the possible issues

deriving from their shared use by multiple threads. In

general, running multiple threads, each operating on

a different working set, may increase the pressure on

cache, since each thread needs a different cache resi-

dency for their data. In our case, however, the largest

dataset is the tree-based model that is accessed read-

only by all the threads. The per-document read-write

data, namely the private data structures mentioned

above, are small, and thus we can conclude that multi-

threading does not impact too much on cache perfor-

mance of vQS MT.

6 GPU-based QuickScorer

In this section we discuss the GPU-based paralleliza-

tion of QuickScorer. Before detailing the strategies

adopted, we first introduce a background on GPUs ar-

chitecture and some related works concerning the ex-

ploitation of GPUs to score/classify with large forests

of decision trees. The pseudo-code, used to describe the

GPU-based parallelization of QS, uses a high-level no-

tation that resembles the constructs of common parallel

programming abstractions used in GPU programming

environments like CUDA [23].

6.1 GPU architectural background

During the latest years the possibility of using GPUs

featuring thousands of cores to parallelize general pur-

pose computations has attracted the interest of many

researchers and developers. GPUs showed potential for

substantial performance gains when compared to tradi-

tional multicore architectures [19]. However, effectively

exploiting the computational power of GPUs is usually

far from trivial. In the following we sketch the internal

organization of GPUs, and discuss issues and best prac-

tices to effectively exploit their computational power.

Although GPUs contains thousands of cores, indeed

simpler functional units orchestrated by centralized SIMD

controls, each core is slower than those of typical CPUs

and has limitations concerning its access to the device

memory, thus resulting in potential contentions unless

specific conditions are satisfied [24]. Moreover, GPU

cores must carefully coordinate their actions; this is

usually a complex issue, considered their internal or-

ganization. Proper algorithms, designed with the archi-

tectures of the GPUs in mind, are needed to maximize

the performance and obtain significant gains over CPU-

based algorithms – a goal which is not always possible

to pursue, depending on the characteristics of the tar-

geted problem [25].

GPU cores are grouped in Streaming Multiproces-

sors (SMs): if m is the number of SMs in a GPU and

each SM features n cores, the total number of cores is

equal to m · n. Each SM is able to run data-parallel

tasks, organized as blocks of threads (thread-blocks).

Each thread constitutes an abstract entity that rep-

resents the execution of a kernel, which in turn repre-

sents a small function/program. The same kernel code

is shared across all the threads of all the thread-blocks.

The execution model associated with thread-blocks

requires to exclusively assign each thread-block to a

given SM, where the threads of the block are executed

concurrently. Thread-blocks have typically many more

threads than the cores available in a single SM, but only

a subset of these threads can run in parallel at a time.

Specifically, each SM is able to schedule and execute

in parallel one or more groups of threads, called warps.

A warp is a sort of 32-way SIMD thread, as it con-

sists of 32 synchronous, data-parallel threads, executed

by an SM in lockstep according to a SIMD paradigm

[24,26]. Due to this model of execution, it is impor-

tant to avoid branch divergence within a warp; more

precisely, threads inside a warp may diverge due to

a data-dependent conditional branch, but this eventu-

ally forces the warp to execute serially each branch ,

while threads not belonging to that path are kept in-

active. Overall, this may cause an under-utilization of

the GPU’s computational resources.

An important feature of the various families of GPUs

is the number of warps whose execution can be sup-

ported by a given SM. This depends on the scheduler

features, the number of cores available, and other char-

acteristics of the architecture. It is worth remarking

that multi-threading, which in GPUs becomes multi-

warping, is a well known technique for hiding latency,

due for example to memory access. Latency hiding is

effective if the probability of having warps that are eli-

gible for executing on a given SM is high. To this end,

a good strategy is to increase the occupancy of the SM,

i.e., the amount of active warps per SM. We can obtain

this result by increasing the number of threads assigned

to each thread-block, but also tuning the code to allow

the GPU to run concurrently more that one thread-

block per SM. In this way, warps from different blocks

can be activated and possibly executed simultaneously.

GPUs also own different types of memories. Each

SM is equipped with private (thread) registers, a small

read-only constant memory, an L1 cache, and a fast

shared memory unit. The last kind of memory, char-
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acterized by low latency and high bandwidth, is actu-

ally shared among the cores of the SM, hence threads

within a warp can access shared memory locations in

parallel. Shared memory is allocated per thread-block;

in particular, since it is important to favour the concur-

rent execution of several thread-blocks by a given SM,

only a portion of the SM’s shared memory can be allo-

cated and accessed by each thread-block. In addition,

GPUs feature a global memory – the adjective global

here refers to the scope of the memory, as it can be

accessed and modified both from the host (CPU) and

the GPU cores – which has a much lower throughput

than the shared memory, but is orders of magnitudes

greater in terms of size. Accesses to global memory gen-

erally pass through a L2 cache that is shared among all

the SMs. In some new models, included the one used

for our experiments, each SM is also equipped with a

dedicated L1 cache, which can optionally cache all the

loads to global memory.

To achieve optimal performance the programmer

must be aware of this complex memory hierarchy and

properly orchestrate memory accesses and transfers. To

this end, we need to consider the execution model of

threads, in particular the hierarchy blocks–warps; more

precisely, the grouping of threads into warps is not only

relevant to computation but also when accessing the

global and shared memories.

For what concerns global memory accesses, even me-

diated through a faster L2 cache shared by all GPU’s

SMs, GPU devices try to coalesce loads/stores issued

by the threads of a warp into as few memory transac-

tions as possible. Consequently, if such threads, iden-

tified by consecutive IDs, access consecutive words in

global memory, their accesses can be merged (coalesced)

in fewer memory transactions, thus fully exploiting the

bandwidth of global memory. Consequently, the cost

of accessing the global memory is measured in terms

of number of memory transactions needed to load/s-

tore memory blocks – the size of a single block is 32

bytes on current NVIDIA GPUs. For example, the 32

threads of a warp can access the global memory in par-

allel with four memory transactions if their aggregated

requests result in four blocks of 32 bytes, each aligned

at 32 bytes. Conversely, if the requests are strided the

resulting bandwidth is lower, since a greater number of

transactions are needed to fulfill the requests.

Shared memory represents the other main actor in

the GPUs’ hierarchy of memories: this kind of mem-

ories is very fast – typically one order of magnitude

faster than global memory – and each SM is equipped

with its own unit; consequently, all the threads within

a thread-block have access to the same shared mem-

ory unit. Each unit is typically small in size – as a

term of reference, NVIDIA Pascal GPUs feature 64 –

96 KB (depending on the model) of shared memory

per SM, while individual thread-blocks have access to

at most 48 KB – and structured in interleaved memory

banks, where the rationale behind the interleaved lay-

out is to achieve high memory bandwidth. This occurs

because successive word addresses are assigned to suc-

cessive memory banks, while memory banks can work

together to serve concurrent requests from the various

threads of a warp. In general terms, to maximize the

effective bandwidth of a shared memory unit one has

to minimize bank conflicts, i.e., to orchestrate the ac-

cesses among the threads of a warp such that they

access words belonging to distinct banks. Thanks to

the interleaved organization and many other minor op-

timizations, access to shared memory is overall much

faster than global memory.

All in all, if an algorithm needs to randomly access

a data structure without a statically predictable pat-

tern, it is desirable to move such data to shared mem-

ory, since random memory accesses directed to global

memory cannot be coalesced. However, given the lim-

ited size of SM’s shared memory we can exploit from

within a thread-block, we have to allocate on such mem-

ories suitable structures, i.e., small data structures that

can fit in shared memory, or that can be partitioned by

limiting the accesses from parallel threads to a suffi-

ciently small partition at a time.

Also, since a shared memory unit is shared across

all the threads of a thread-block, it is then possible to

exploit the unit for thread cooperation. Finally, we re-

port that the latest generations of GPUs support very

efficient shared memory atomic operations at hardware

level, thus greatly mitigating the negative effects de-
riving from race conditions between the threads of a

thread-block/warp – this occurs when the threads ac-

cess concurrently the same shared memory locations.

6.2 Related work

Literature about GPU-based algorithms to score/clas-

sify with forests of trees is limited to classifiers based

on small ensembles of random-trees. Schulz et al. [27]

and Van Essen et al. [28] point out that devising this

kind of approaches presents relevant challenges, in the

sense that random trees are characterized by structural

irregularity; this, in turn, represents a serious obsta-

cle when considering the execution model and the hi-

erarchy of memories characterizing modern GPUs. In a

few selected cases it may be possible to overcome the

aforementioned issues by carefully designing GPU algo-

rithms that exploit the properties of a given problem,
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such as in the case of the image labeler [27]. In general,

however, these solutions have a very limited scope.

Van Essen et al. [28] propose a GPU-based approach

that use Compact Random Trees (CRFs), i.e., random

trees having fixed depth, to control the structure and

the size of trees, thus fitting well the architectural pe-

culiarites of the GPUs. Overall, we note that the pro-

posed solution resembles a less refined version of the

approach proposed by Asadi et al. [6], thus implying

benefits and limitations similar to VPRED. In the ex-

perimental evaluation the authors show how their solu-

tion outperforms the CPU-based counterpart in terms

of performance, economic costs, and power consump-

tion. We also report, however, that the authors did use

ensembles having a fixed, limited size – 32 CRFs per

ensemble – while each CRF had a fixed, limited depth

(six levels); finally, the authors did not consider the ef-

fects that variations in the size of the ensembles, depth

of the CRFs, and number of features have on the per-

formance.

6.3 GPU-QuickScorer

There are two main challenges in designing algorithms

for GPUs – these apply to the GPU-based paralleliza-

tion of QuickScorer as well. The first challenge is to

make available a sufficiently large degree of parallelism

to profit from the thousands of cores available. The sec-

ond challenge is to take advantage of the GPUs’ com-

plex hierarchy of memories, by properly defining the

layout of data structures and orchestrating over such

data structures the accesses of the parallel threads.

Inter- and intra-document parallelism and task
granularity. To obtain sufficient parallelism degree in

parallelizing QS, we combine inter- and intra-document

parallelism, as discussed in Section 3. This hybrid tech-

nique is indeed useful to exploit both coarse and fine-

grained parallelism, as we want to potentially process

in parallel p1 documents (inter-document parallelism)

by using p2 parallel threads for scoring each document

(intra-document parallelism) – thus yielding p = p1 · p2
threads running in parallel. The way to realize this

parallelism scheme on a GPU is to assign each of the

p1 documents to score in parallel to a single block of

threads. Therefore we have p1 = M , where M is the

number of blocks of threads allocated, in turn sched-

uled over the m GPU SMs. Moreover, if N is the num-

ber of parallel threads in each thread-block, we have

that p2 = N threads run concurrently to score a given

document. Indeed, we can benefit from an increased

task granularity (see Section 3), by assigning multiple

documents to each thread-block.

Within each thread-block, rather than assigning each

document feature to a single thread of the block, we

assign each feature to a warp. The main reason behind

this strategy is to favor coalesced accesses to the tu-

ples (γ, mask, h) associated with a given feature. In ad-

dition, since we have usually less warps than features

(N32 � |F|), we also end up increasing the task granu-

larity by assigning more features per warp.

Model partition and allocation. We recall that

QuickScorer adopts two main data structures be-

sides the input vector D:

– the model data structure, composed of the tuples

(γ, mask, h) encoding the branch nodes of the forest

T , and leafvalues, the vector that stores the scores

associated with the leaves of the trees in T ;

– the output vectors leafindexes – one for each tree

of the forest T ; these are updated during the com-

putation to eventually identify the exit leaves of the

trees.

The model data structure is read-only, and QS ac-

cess it feature-by-feature, with perfect spatial locality.

Conversely, QS acesses in read-write mode the output

vectors without any regularity, since it is not possible

to exploit any predictable pattern to promote locality.

The model data structure is too large to be stored

in shared memory, given the limited size of the latter

(typically few tens of KBs). For example, let us consider

a model T made up of a forest of 10, 000 trees: for only

storing the leafvalues of all the trees, where each leaf

value is represented as a double of 8 bytes, we need

a space of about 5 MB. The size of global memory,

however, is typically in the order of 4 – 8 GB, thus

representing the best candidate to store T , even if high-

throughput access to such memory is only possible if we

can exploit coalescing.

Indeed, QS perfectly fits the above requirement: the

model data structure is stored as a Structure of Arrays

in global memory, and it is accessed sequentially by QS

feature-by-feature by means of linear scans to promote

spatial locality. More precisely, we assign each feature

to a warp, thus assigning to the threads of the warp

consecutive memory locations that store the values of

the tuples (γ, mask, h) associated with a feature fφ ∈ F :

in turn, this leads to coalesced accesses. We finally men-

tion that by partitioning T we increase the chance that

individual tree-blocks fit into the shared L2 cache, thus

further increasing the bandwidth that can be achieved.

Regarding the output vector leafindexes, its size

depends on the number of trees |T | and on the max-

imum number of leaves Λ. Considering the example

above, 10, 000 trees, each having 64 leaves, require
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Algorithm 3: GPU-QuickScorer
1 GPU-QuickScorer(D,T ):
2 copyHostToGPU&Transpose(T )
3 foreach document batch D, D ⊆ D do
4 copyHostToGPU(D)
5 SD ← {s0 = 0, · · · , s|D|−1 = 0}
6 foreach tree-block T , T ⊆ T do
7 pos pivot← findFalseNodesGPU (D, T )
8 updateScoresGPU (T,pos pivot,SD)

9 return SD

80 KB of memory, which is greater than the amount

of shared memory typically available for individual

thread-blocks. Since the threads of a warp perform un-

predictable read-write accesses to leafindexes, using

the global memory to manage leafindexes would un-

fortunately translate into dealing with random mem-

ory accesses (no coalescing), thus incurring in nega-

tive impacts on performance. Hence, rather than stor-

ing leafindexes to global memory, it is far more ef-

ficient to partition the model, as already discussed in

Section 3, to make the output vector suitable for shared

memory. More precisely, T gets partitioned into mul-

tiple tree-blocks T ⊆ T of size τ = |T |, where τ is

chosen to be small enough to make the corresponding

leafindexes at least fit the amount of shared mem-

ory available per thread-block. Performance-wise, the

shared memory is at least one order of magnitude faster

than global memory, it does not require coalescing, it

can serve up to 32 parallel requests, and it can effec-

tively manage atomic operations at hardware level. As

mentioned above, another motivation to adopt a small

size τ of model partitions is to increase the chance that

each partition fit into the L2 cache, thus minimizing

cache miss rates and thus average global memory la-

tency.

A final remark concerns where the input data, i.e.,

the features vectors associated with the documents to

score for a given query, gets stored: more precisely, the

feature vectors are moved from the CPU to the GPU

global memory in large batches D ⊆ D; since the global

memory is large in size, it can easily host large batches

of input documents D ⊆ D: for example, 10, 000 docu-

ments, with 1, 000 features each, take only 40 MB.

The GPU algorithm. GPU-QuickScorer

(QSGPU), the GPU-based version of QuickScorer,

is roughly structured in two phases, sketched in

Algorithm 3.

High-level overview. The algorithm starts by trans-

ferring the entire model from the host (CPU) memory

to the GPU global memory (line 2). We note that the

uploaded model comes already partitioned into disjoint

tree-blocks T ⊆ T , where each T is stored separately

in contiguous regions of the global memory. The docu-

ments to be scored are also transferred from the host

memory to the GPU global memory in batches (line 4),

while their initial scores are set to zero (line 5). At the

same time, each batch of documents gets also trans-

posed in parallel by the GPU (line 2); more precisely,

the original layout of D is an array of vectors of features

(we denote each vector by x ∈ D), while the transposed

layout features an array of vectors where each vector

contains the values of the same feature fφ ∈ F across

all the documents in D. We note that this layout al-

lows to parallelize the retrieval of false nodes for all the

tree-blocks T ⊆ T – we discuss this point later.

Subsequently, the algorithm iterates across the

various tree-blocks T ⊆ T (line 6). Unlike

the sequential QS, false nodes are first identified

(findFalseNodesGPU, line 7) before proceeding to

update leafindexes and the scores of the documents

(updateScoresGPU, line 8).

First phase – finding the stop positions. For each

feature fφ in each document x ∈ D the GPU threads

in findFalseNodesGPU work in parallel to identify

the positions of the so-called pivots in the sorted list

of tuples (γ, mask, h). Given a feature fφ and a docu-

ment x ∈ D, a pivot represents the greatest position in

the sorted list of tuples such that for all the subsequent

positions the following inequality holds: x[φ] ≤ γ. In

other words, a pivot separates the false nodes from the

true nodes among the branching nodes that perform

their tests over fφ. It is worth remarking that using the

transposed layout for a given batch of documents D

allows to use an efficient GPU-based vectorized binary

search 4 to search in parallel the pivots and store them

in pos pivot; also, the transposed layout arranges the
values of a given fφ for all the documents in D contigu-

ously, thus allowing to coalesce read accesses performed

by the threads of a warp.

Finally, we note that the operation carried on by

findFalseNodesGPU relies on an inter-document

parallelization strategy, thus distinguishing itself from

the computation that follows. This separation implies

a better access to the SoA data structures holding

the tree-based model: indeed, findFalseNodesGPU

needs, for all x ∈ D, to access just the field γ in the re-

lated SoA data structure holding the tuples, thus favor-

ing a better exploitation of the L1/L2 global memory

caching – this implies also that accesses to the fields

mask and h are delegated to the subsequent phase in

updateScoresGPU.

Second phase – updating the scores. Once the posi-

tions of the pivots are available in pos pivot (line 7),

4 To this end, we exploit the Thrust library, v1.7.0, pro-
vided by the CUDA framework.
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the algorithm must proceed to update the partial scores

of the currently considered batch of documents by

adding the contributions of the tree-block T , T ⊆ T .

We note that at this point we only need to access

pos pivot, since the original documents x ∈ D and

the field γ in the tuples (γ, mask, h) are no longer

needed. This second phase is realized by the func-

tion updateScoresGPU (line 8, Algorithm 3), whose

pseudocode is detailed in Algorithm 4.

As stated above, to maximize GPU computation

we need to feed the thousands of GPU cores by com-

bining the inter-document and intra-document paral-

lelization strategies. For what concerns inter-document

parallelization, each document is assigned to a single

block of threads – indeed, in Algorithm 4, line 2, we

use the notation parallelblock to indicate that each it-

eration of the loop is assigned to a different block of

threads. As discussed before, the model T comes parti-

tioned to make sure that a block of threads has sufficient

resources to manage leafindexes in shared memory

(line 3). For what concerns intra-document paralleliza-

tion, this is achieved within each block of threads by

properly orchestrating the operations conducted within

the mask computation and score computation steps.

First, the elements of leafindexes are initialized

(line 4) – we use the keyword parallelthread to indicate

that iterations of the loop are partitioned among the

threads of the thread-block and executed in parallel. A

barrier (line 6), denoted by synchthreads, makes sure

that the initialization is completed by all threads before

proceeding further.

The algorithm then proceeds to the mask computa-

tion step, where we take advantage of the grouping of

threads into warps. Indeed, we explicitly assign a dif-

ferent feature fφ to each warp of the thread-block – to

this end we note the use of the notation parallelwarp

(line 7). Going further on, the construct parallelthread
at line 8 indicates the nested parallelism within each

warp, where the threads process in parallel the set of

tuples, N T
φ , associated with φ in the tree-block T . Due

to the memory layout used with the tuples, accesses

performed by the threads of a warp are distributed se-

quentially in global memory, thus allowing to exploit co-

alesced accesses. Subsequently, the retrieved masks are

used to update in parallel the leafindexes of the cor-

responding trees: accesses to leafindexes are random

and potentially conflicting, thus atomic updates are em-

ployed to guarantee consistency (line 9). Finally, the

loop ends when all the false nodes have been processed

for the currently considered document x and feature fφ,

i.e., until the position pos pivot[x][fφ] in the tuple ar-

ray is reached by some of the threads of the warp. Note

that when this position is reached from within a warp,

some of the 32 threads of the warp may result inactive,

since leafindexes must not be modified for nodes af-

ter the pivot. This may hinder GPU efficiency, and thus

the overall performance of the parallel algorithm.

After that all the features have been processed,

the algorithm has to update the document score by

adding the contributions of the currently considered

tree-block T . First the vector leafindexes gets parti-

tioned among the threads of the thread-block (line 12),

such that each thread accumulates in a private, lo-

cal register the contributions of a subset of trees by

identifying their exit leaves in leafindexes. We note

that accesses to leafvalues cannot be coalesced and

that this data structure lies in global memory; however,

thanks to the fact that the model is partitioned into

several sub-forests T ∈ T , and that leafvalues is typ-

ically small in size, it possible to maximize the chance

that leafvalues fits into the L2 cache by picking up a

proper τ .

Finally, the threads of the block performs a block-

wise sum-reduction over the accumulated scores, thus

yielding a partial score that is used to update the overall

score of the document in global memory (line 17)5.

7 Experiments

In this section we discuss the results of extensive exper-

iments conducted to assess the performance of the dif-

ferent parallelization strategies applied to QS. Specifi-

cally, our goal is to measure the scoring efficiency of the

different proposed parallel versions of QS using an off-

the-shelf shared-memory multiprocessor, and compare

their performance with the GPU-based versions. For

all the solutions, we also evaluate and explain the per-

formance results obtained by using tools for low-level

profiling, e.g. to measure cache-misses or GPU branch

divergence.

7.1 Datasets and experimental settings

We conduct experiments on three publicly available

datasets, namely the MSN, Yahoo LETOR, and is-

tella ones, which are datasets commonly used in the

scientific community to evaluate LtR solutions. The

characteristics of the three datasets are listed in Ta-

ble 2. All the datasets provide query-document pairs

labeled with relevance judgments ranging from 0 (irrel-

evant) to 4 (perfectly relevant).

5 To this end, we exploit the CUB library, v1.7.0 (https:
//nvlabs.github.io/cub/).

https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/
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Algorithm 4: The updateScoresGPU kernel
1 updateScoresGPU(T,pos pivot,SD):
2 parallelblock foreach x ∈ D do
3 shared leafindexes[τ ], where τ = |T |
4 parallelthread foreach th ∈ T do
5 leafindexes[h]← 11...11

6 synchthreads

7 parallelwarp foreach fφ ∈ F do // 1○ Mask Computation Step

8 parallelthread foreach (γ, mask, h) ∈ NTφ in ascending order, up to the pos pivot[x][fφ] -th element do
9 leafindexes[h] ← (leafindexes[h] ∧atomic mask)

10 synchthreads

11 local accScores← 0 // 2○ Score Accumulation Step
12 parallelthread foreach th ∈ T do
13 local j ← index of the leftmost bit set in leafindexes[h]
14 local l← h · Λ+ j
15 accScores← accScores+ leafvalues[l]

16 synchthreads

17 SD[x]← SD[x] + BlockSumReduction(accScores) // 3○ Score Reduction Step

18 return SD

– The MSN dataset is available at http://research.

microsoft.com/en-us/projects/mslr/. The

dataset is divided into five folds. In this work, we

use only the first fold, namely MSN-1.

– The Yahoo dataset is available at http://

learningtorankchallenge.yahoo.com. It consists

of two distinct datasets (Y!S1 and Y!S2). In this

paper we use the Y!S1 dataset.

– The Istella (Full) dataset is avail-

able at http://blog.istella.it/

istella-learning-to-rank-dataset/. To the

best of our knowledge, this dataset is the largest

publicly available LtR dataset, particularly useful

for large-scale experiments on the efficiency and

scalability of LtR solutions [17]. Moreover, it is

the first public dataset being representative of a

real-world ranking pipeline, with long lists of results

including large numbers of irrelevant documents for

each query, as also discussed in [29].

The experimental methodology adopted is the fol-

lowing. We use training data from MSN-1, Y!S1, and

Istella datasets to train λ-MART [13] models by opti-

mizing NDCG@10. The different generated models are

ensembles of trees, whose number of leaves is equal to

either 32 or 64. To train these models we use Quick-

Rank6, an open-source LtR C++11 framework that pro-

vides efficient implementations of LtR algorithms [5]. It

is worth noting that the results reported in the paper,

concerning the efficiency at testing time of tree-based

scorers, are independent of the specific LtR algorithm

used to train individual ensembles of trees.

Experimental setting for efficiency tests. For the

tests we use a shared-memory NUMA multiprocessor

6 http://quickrank.isti.cnr.it

equipped with two Intel Xeon CPU E5-2630-v3, clocked

at 2.40 GHz (3.20 GHz in turbo mode) and 192 GB

RAM. Each Xeon CPU has 8 general-purpose cores;

each core has a dedicated L1 cache of 32 KB, a ded-

icated L2 cache of 256 KB, and a shared L3 cache of

20 MB. The machine runs Ubuntu Linux 14.04.5 LTS

(kernel GNU/Linux 3.13.0-121-generic (x86 64)).

The system also includes an NVIDIA GTX 1080

GPU. The GPU is equipped with a 2 MB L2 cache,

8 GB GDDR5X RAM, and 20 streaming multiproces-

sors, each having 128 cores, a 96 KB shared memory

unit (48 KB accessible by individual thread-blocks),

and a 48 KB L1 cache.

All the version of QuickScorer are written in

C++11, and are compiled with GCC 6.3.0, plus

the latest version of CUDA 8 for the GPU ver-

sion. The -O3 flag is used for the GCC compiler,

while the flags -Xptxas=-dlcm=ca and -gencode

arch=compute 61,code=sm 61 afre used for the CUDA

compiler. More specifically, the former flag enables

global memory caching via L1 cache, while the latter

generates optimized code that targets the GPU used in

the experiments.

To measure the efficiency of the above methods we

run 10 times the scoring code on the test sets of the

MSN-1, Y!S1, and Istella datasets. We then compute

the average per-document scoring cost. Moreover, to

profile the behavior of each CPU-based QS version,

we employ perf7, a performance analysis tool avail-

able under Ubuntu Linux distributions. Analoguously,

to profile the GPU-based version of QS we employ

nvperf, a GPU performance analysis tool provided by

the NVIDIA CUDA framework.

7 https://perf.wiki.kernel.org

http://research.microsoft.com/en-us/projects/mslr/
http://research.microsoft.com/en-us/projects/mslr/
http://learningtorankchallenge.yahoo.com
http://learningtorankchallenge.yahoo.com
http://blog.istella.it/istella-learning-to-rank-dataset/
http://blog.istella.it/istella-learning-to-rank-dataset/
http://quickrank.isti.cnr.it
https://perf.wiki.kernel.org
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Table 2: Dataset features: i) number of features, ii) number of queries in train/validation/test sets, iii) total number

of documents in train/test sets, and iv) average number of document per query in the test set.

Property
Dataset

MSN-1 Y!S1 Istella

# features 136 700 220
# queries in training 6, 000 19, 944 23, 319
# queries in validation 2, 000 2, 994 –
# queries in test 2, 000 6, 983 9, 799
Total # documents in train 723, 412 473, 134 7, 325, 625
Total # documents in test 241, 521 165, 660 3, 129, 004
Average # documents per query in test 120.7 23.72 319.31

7.2 Vectorized QuickScorer

We report the performance in terms of per-document

scoring time (µs) of Vectorized QuickScorer (vQS)

against the sequential QS version in Table 3. To ease

the reading, in the following we refer to the vQS em-

ploying AVX-2 as vQS-256 – we limit ourselves to this

version as it always outperforms the one using 128 bits

registers.

From the table, we see that vQS outperform QS

with significant speedups; more precisely, when mod-

els feature trees having Λ = 32 leaves each, we observe

that the best performance is always obtained by vQS-

256, which yields speedups ranging from 1.9x to 3.2x

over QS. The observed trend in performance remains

the same when Λ = 64; in this context, we also ob-

serve that vQS-256 remains the fastest method even if

its speedup over the sequential implementation of QS

slightly decreases and ranges from 1.2x to 1.8x.

Instruction level analysis. We use the perf tool to

measure the total number of instructions, number of

branches, number of branch mis-predictions, L3 cache

references, and L3 cache misses for the different scor-

ers, running on a single core of the Intel Xeon CPU.

In these tests we compare QS against vQS-256, using

for testing the largest and most challenging istella

dataset. Experiments on the other datasets are not re-

ported here, as they exhibit a similar behavior.

Table 5 reports the results achieved with all mea-

surements normalized per-document and per-tree. It is

worth specifying that L3 cache references accounts for

those references which are not found (misses) in any

of the previous levels of cache, while L3 cache misses

account for the percentage of L3 cache references that

miss in L3 as well.

Interestingly, the analysis reveals that the use of the

AVX-2 256 bit instruction set causes a significant de-

crease in the average number of instructions needed

to score a single document. This reduction justifies

the speedup achieved by the SIMD implementation.

In terms of branch figures, vQS-256 shows lower mis-

prediction than QS. The total number of per-tree per-

document branches is also lower, demonstrating that

the chosen parallelism represents a good strategy to

increase the throughput of QS. The same results are

achieved for the cache utilisation. As in the preceding

case, L3 cache misses and references are always lower

than the ones of QS, thus revealing a more effective use

of the cache.

7.3 Multi-threading QuickScorer

In this section we discuss the performance results ob-

tained by vQS MT against vQS and QS. We employ

OpenMP to distribute the threads of vQS MT among

the processing cores available within our multiproces-

sor, indeed a NUMA system with 2 nodes, where each

node is an 8-way multicore CPU equipped with a local

memory. Each thread uses the SIMD instructions to

score bunches of documents at a time (till 8 documents

at a time), and thus its implementation is based on

vQS. The results, reported in terms of per-document

scoring time (µs), are thus obtained by running the

vQS MT on the 16 physical cores of our NUMA mul-

tiprocessor, without using hyper-threading – namely,

an INTEL technology that allows 2 threads to run si-

multaneously on the same core by sharing its compu-

tational resources. In fact, our threads are compute-

bound, and we experimentally verified that the adop-

tion of hyper-threading actually reduces the overal per-

formance. Moreover, we use the numactl tool to force

a thread allocation on the NUMA architecture. This

means that a thread will use the local memory of the

node where it runs for all its life-cycle. This avoid slower

accesses to memory of different nodes of the NUMA ar-

chitecture. Table 4 finally reports the results.

From the table, we see that vQS MT’s speedups

range from 8.5x to 14x in the case of 32 leaves, while

they range from 6.3x to 12.5x in the case of 64 leaves.
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Table 3: Per-document scoring time in µs of QS and vQS on MSN-1, Y!S1, and Istella datasets. Speedups over

QS are reported between parentheses.

Method Λ

Number of trees/dataset

1, 000 5, 000

MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QS
32

7.0 (–) 12.4 (–) 8.9 (–) 33.7 (–) 43.8 (–) 34.5 (–)
vQS-256 2.8 (2.5×) 3.9 (3.2×) 3.1 (2.9×) 17.4 (1.9×) 20.8 (2.1×) 14.3 (2.4×)

QS
64

12.4 (–) 19.2 (–) 13.5 (–) 70.7 (–) 83.3 (–) 69.8 (–)
vQS-256 8.3 (1.5×) 10.4 (1.8×) 7.9 (1.7×) 60.8 (1.2×) 64.6 (1.3×) 46.3 (1.5×)

Method Λ

Number of trees/dataset

10, 000 20, 000

MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QS
32

74.6 (–) 88.7 (–) 71.4 (–) 183.7 (–) 185.1 (–) 157.2 (–)
vQS-256 39.6 (1.9×) 44.2 (2.0×) 31.1 (2.3×) 87.8 (2.1×) 88.5 (2.1×) 64.8 (2.4×)

QS
64

194.8 (–) 186.9 (–) 167.4 (–) 470.5 (–) 377.2 (–) 326.1 (–)
vQS-256 146.9 (1.3×) 136.8 (1.4×) 105.9 (1.6×) 321.7 (1.5×) 274.1 (1.4×) 236.6 (1.4×)

Instruction level analysis. The low-level statistics per-

formed on Istella with 64-leaves λ-MART models (Ta-

ble 5) show that vQS MT inherits the same figures

from vQS-256. The use of OpenMP to parallelize vQS

does not incur in computational overhead, as the in-

struction count is the same as vQS-256. The same

considerations can be done for the total number of

branches and branch mis-predictions. In terms of L3

cache misses, vQS MT shows an increased number of

misses when dealing with the increasing size of mod-

els. This is an expected behaviour, due to the architec-

ture of the Intel Xeon processor presenting a L3 cache

shared among all the cores. Finally, we report that the

high number of threads working concurrently during

the scoring process affects negatively the temporal and

spatial locality, hence leading to a higher number of

cache misses than its competitors.

7.4 GPU-based QuickScorer

This section discusses the performance of GPU-

QuickScorer (QSGPU). GPUs provide large comput-

ing power at the cost of a few constraints that im-

pact on the design and tuning of algorithms. Such con-

straints are similar in nature, yet they quantitatively

differ across GPUs. Hereinafter, without loss of gener-

ality, we focus on the GPU used in this experimental

evaluation, an NVIDIA GTX 1080 GPU, and report its

constraints in Table 6.

First, we must consider that a single thread-block

can access only up to 48 KB of shared memory. Within

the updateScoresGPU kernel, which represents the

time-dominant component of QSGPU, QSGPU exploits

the shared memory of each SM to store leafindexes.

If Στ = τ · Λ/8, with Στ ≤ 48 KB, represents the size

(in bytes) of the shared memory footprint of a model

of τ trees, we have that each thread-block can process

at most τ trees.

Example. Given a large model composed of 20, 000

trees with Λ = 32, the leafindexes data struc-

ture for all the trees of the model would require

Στ = 20, 000 · 32/8 = 80, 000 bytes of storage, beyond

the 48 KB limit. Therefore, the maximum number of

trees that can be included in a single partition of the

model is τ = 12, 288 for Λ = 32, and τ = 6, 144 for

Λ = 64.

As discussed previously, this does not represent a

major issue for QSGPU, as any model can be evalu-

ated in chunks of any custom size τ . However, split-

ting a model into pieces introduces overhead, as part of

the threads constituting a warp become inactive when

reaching a pivot that separates true nodes from false

ones in a given partition of the model. This inefficiency

is measured by warp efficiency, i.e., the average fraction

of active threads per executed warp. We observe that

each partition made of τ trees has its own set of piv-

ots: therefore, increasing the partitions of the model in-

creases proportionally the number of pivots, thus harm-

ing the warp efficiency. Even if this phenomenon is

more evident with large feature sets, or when the num-

ber of false nodes is very small, in general we have that

the larger the number of partitions (or, equivalently,

the smaller τ), the smaller the warp efficiency.
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Table 4: Per-document scoring time in µs of vQS and vQS MultiThread on MSN-1, Y!S1, and Istella datasets.

Speedups over vQS-256 are reported in parentheses.

Method Λ

Number of trees/dataset

1, 000 5, 000

MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella
vQS-256

32
2.8 (–) 3.9 (–) 3.1 (–) 17.4 (–) 20.8 (–) 14.3 (–)

vQS MT 0.2 (14.0×) 0.4 (9.8×) 0.3 (10.3×) 1.4 (12.4×) 1.9 (10.9×) 1.2 (11.9×)

vQS-256
64

8.3 (–) 10.4 (–) 7.9 (–) 60.8 (–) 64.6 (–) 46.3 (–)
vQS MT 0.7 (11.9×) 1.0 (10.4×) 0.7 (11.3×) 4.9 (12.4×) 10.2 (6.3×) 3.7 (12.5×)

Method Λ

Number of trees/dataset

10, 000 20, 000

MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

vQS-256
32

39.6 (–) 44.2 (–) 31.1 (–) 87.8 (–) 88.5 (–) 64.8 (–)
vQS MT 3.2 (12.4×) 4.1 (10.8×) 2.5 (12.4×) 7.3 (12.0×) 8.2 (10.8×) 7.6 (8.5×)
vQS-256

64
146.9 (–) 136.8 (–) 105.9 (–) 321.7 (–) 274.1 (–) 236.6 (–)

vQS MT 12.5 (11.8×) 14.6 (9.4×) 8.8 (12.0×) 46.2 (7.0×) 35.1 (7.8×) 26.1 (9.1×)

Method
Number of Trees

1,000 5,000 10,000 15,000 20,000

Instruction Count

QS 67 70 79 81 73
vQS-256 57 61 66 65 57
vQS MT 57 60 66 65 57

Num. branch mis-predictions (above)
Num. branches (below)

QS
0.139 0.036 0.022 0.013 0.010
7.86 7.44 8.34 8.62 7.64

vQS-256
0.03 0.004 0.002 0.002 0.001

4.47 4.81 5.22 5.17 4.56

vQS MT
0.02 0.004 0.003 0.002 0.001
4.45 4.80 5.22 5.17 4.55

L3 cache misses (above)
L3 cache references (below)

QS
0.005 0.001 0.001 0.002 0.004

2.0 1.47 1.57 1.75 1.94

vQS-256
0.004 0.003 0.025 0.004 0.026
0.51 1.04 1.31 1.86 1.38

vQS MT
0.005 0.004 0.190 0.085 0.151
0.47 1.14 1.59 1.62 1.64

Table 5: Per-tree per-document low-level statistics on

Istella with 64-leaves λ-MART models.

Secondly, τ determines the maximum number of

thread-blocks that can run concurrently on the same

SM; indeed, each SM is equipped with only 96 KB

of shared memory, which limits the number of thread-

blocks that can be concurrently executed to a maximum

of βτ = b96 KB/Στc.
While satisfying the last constraint we also aim to

maximize occupancy, i.e., the average ratio between the

number of active warps per cycle per SM and the max-

Table 6: NVIDIA GTX 1080 constraints.

NVIDIA GTX 1080 Feature Limit

Threads (warps) per SM 2,048 (64)
Threads (warps) per thread-block 1,024 (32)
Thread-blocks per SM 32
Shared memory per SM 96 KB
Shared memory per thread-block 48 KB
Registers per thread-block 65 K
Warp schedulers per SM 4
L2 cache size 2 MB

imum number of active warps that are supported per

SM (64 in our GPU, for a total of 2,048 threads). Gen-

erally, by maximizing occupancy we increase the chance

for SM schedulers to hide/tolerate warp stalls caused by

global memory accesses. We note that if we maximize

occupancy by simply increasing the number of threads

per thread-block, we may end up reducing the number

of thread-blocks concurrently executed per SM, due to

the constraint on the total number of active threads per

SM (max 2,048).

Consequently, besides occupancy it is also important

to maximize the number of thread-blocks per SM, which

in turn depends (i) on the number of threads assigned

to each thread-block and (ii) on the total number of

thread-blocks deployed. Indeed, maximizing the num-

ber of thread-blocks per SM maximizes also the chance

of keeping SMs busy, as warps stalled by block-level

barriers can be masked by other eligible warps.

All in all, given a specific τ the policy we use

to maximize occupancy, while maximizing also the

number of thread-blocks concurrently executed per

SM, is to choose the minimum number of threads per

thread-block (n threads) that allows to run enough
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concurrent thread-blocks per SM with full occupancy.

More formally:

min n threads = 2n

subject to 5 ≤ n ≤ 10;

2 ≤ 2,048
n threads ≤ βτ .

Note that the first constraint forces n threads to

be a multiple of 32 (warp size) and a divisor of

1,024 (max threads per thread-block). Since we

minimize n threads, this choice actually maximizes

the number of concurrent thread-blocks per SM

(i.e, 2,048/n threads), provided that this number is

not greater than βτ . Note also that the number of

thread-blocks per SM must be at least 2: indeed, the

maximum shared memory allocated to each thread-

block is 48 KB, exactly half of the total shared memory

available, while the maximum n threads per thread-

block is 1,024, exactly half of the maximum number

of threads per SM that guarantees full occupancy (see

Table 6). We validated the policy by conducting a grid

search over τ and n threads, with ensembles featuring

20,000 trees and Λ = {32, 64} leaves per tree (results

are omitted for brevity).

Example. Let τ = 4,000 and Λ = 32. A single thread-

block requires Στ ≈ 16 KB, which allows to have at

maximum βτ = 96/16 = 6 concurrent thread-blocks

per SM. If we use 6 thread-blocks per SM, we can have

at most n threads = 320 threads per thread-block,

due to the limit of 2,048 threads per SM, thus yielding

a total of 1,920 threads: this implies a sub-optimal

occupancy, i.e., 1, 920/2, 048 = 0.9375 < 1. We rather

use n threads = 29 = 512, which yields full occupancy

and 2,048/512 = 4 ≤ βτ thread-blocks per SM.

Another parameter, related to n threads, is

n blocks, i.e., the overall number of thread-blocks to

allocate when executing the kernel updateScoresGPU.

This parameter is not critical, since it is sufficient to al-

locate a large number of thread-blocks, i.e., n blocks�
m ∗ βτ , where m ∗ βτ represents the maximum number

of blocks actually running in parallel on the m = 20

SMs of our GPU. Indeed, since we have to score huge

amounts of query-document pairs and the pairs are

distributed over the thread-blocks, we have that the

greater the number of thread-blocks, the finer the gran-

ularity of aggregated tasks assigned to each thread-

block, which in turn guarantees a better load balancing

of the workload distributed over the SMs.

The last key factor is the L2 cache memory size (2

MiB), which has a strong influence on the tuning of τ .

Indeed, the cache size impacts on the access time to the

remaining data structures stored in the GPU global

memory. More precisely, for each internal node QSGPU

uses Λ/8 + 2 bytes to store, respectively, the node’s

bitvector mask and tree ID h, while it uses 8 bytes (a

double) for each leaf score in leafvalues. In general,

we observe that the cache size imposes a stricter upper

bound than the shared memory constraint.

Example. QSGPU requires (Λ/8 + 2) · (Λ − 1) plus

8 · Λ bytes for each tree. Given a model with 20, 000

trees, the 2 MiB constraint gets already violated when

τ = 5, 000 with Λ = 32, and τ = 2, 000 with Λ = 64.

All in all, to exploit the computational power of a GPU

we need to pursue two contrasting goals: maximizing

the warp efficiency by using a large τ , and maximizing

the hit rate of the L2 cache by using a sufficiently small

τ . We argue that these goals can be achieved by using

a value of τ that is sufficiently close to the size of the

L2 cache, while the number threads per thread-block,

n threads, and the number of thread-blocks, n blocks,

can be statically determined as shown previously.

In the batch of experiments that follows, we val-

idate our analytic performance model and the choice

of τ for optimal performance. Indeed, we vary τ in

the [1, 000 − 10, 000] range, and for each value of τ we

set the number of threads per thread-block, n threads,

by means of the previously illustrated policy. Also the

number of thread-blocks, n blocks, is set to the highest

possible value, 64K − 1, as this ensures the best possi-

ble load balancing of the workload. The dataset features

are |T | = 20, 000 and Λ = {32, 64}. We also use nvprof

to collect two profiling metrics, i.e., the L2 cache hit ra-

tio and the warp efficiency. Finally, we report that the

trends observed in the plots can be reproduced with

different values of |T | and Λ (we omit the results for

brevity). Figure 2 presents the results.

From the Figure, we first notice that the L2 hit

rate remains close to 1 until τ ≤ 5, 000 (Λ = 32) and

τ ≤ 2, 000 (Λ = 64); this is expected, considering the

amount of L2 cache available (2 MB) and the space re-

quired by each partition of the model. Secondly, we ob-

serve that warp efficiency increases as τ increases (this

reduces the number of tree-blocks): this is again ex-

pected, as having less tree-blocks implies less pivots,

which in turn reduces the number of times part of the

threads making up a warp become inactive when reach-

ing some pivot of some feature.

Overall, increasing τ improves the scoring time (this

is mainly due to the improved warp efficiency) until

the L2 hit rate remains close to 1, thus indicating the

existence of a tradeoff; indeed, when the cache perfor-

mance starts to degrade (τ ≥ 6, 000 with Λ = 32, and
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Fig. 2: Performance analysis of GPU-QuickScorer by varying the size of tree-blocks τ . Λ = 32 (left) and 64

(right), |T | = 20, 000, variable number of threads per thread-block, and fixed number of thread-blocks (32K). The

primary Y axis is used to report the average scoring time per document (in µsec.), while the secondary Y axis is

used to report the L2 cache hit rate and the Warp efficiency.
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τ ≥ 3, 000 with Λ = 64), the scoring time starts to in-

crease noticeably. In the next section we compare the

best scoring times achieved by QSGPU with the ones

obtained by the other parallel solutions.

7.5 Overall comparison

From the experimental results discussed so far, we al-

ready saw the interesting speedups obtained by exploit-

ing different types of parallelization. In this section we

summarize and compare the best scoring times obtained

by QSGPU, vQS MT, and the sequential QS over dif-

ferent datasets and learned tree models. Recall that

vQS MT exploits both SIMD and multi-threading par-

allelism to fully exploit our NUMA multiprocessor –

we remind that our CPU is composed of 2 × 8 cores,

and each core allows 8-way SIMD parallelism (AVX-

2). Table 7 shows the per-document scoring time in µs,

and the speedups obtained, for different sizes |T | of the

model, and different numbers of leaves Λ. When |T | gets

larger, QSGPU partitions the model in different blocks

of size τ , and adopts a suitable number of threads per

thread-block to ensure the best occupancy of each SM

in the GPU. Details about the two parameters that

are crucial for QSGPU’s performance are shown in the

Run-time configuration columns. Note that the num-

ber of threads for vQS MT is always set to 16, i.e., the

number of cores available in our NUMA multiprocessor.
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Table 7: Per-document scoring time in µs of QuickScorer, vQS MultiThread, and GPU-QuickScorer

on MSN-1, Y!S1, and Istella datasets. Speedups are reported between parentheses – (black) for vQS Multi-

Thread vs. QuickScorer, (bold black) for GPU-QuickScorer vs. QuickScorer, and [bold red] for

GPU-QuickScorer vs. vQS MultiThread.

D |T | Λ Method
Run-time configuration

Scoring time (speedup)
# threads τ

MSN-1

1,000

32
QS 1 – 7.0 (–)

vQS MT 16 – 0.2 (35x)
QSGPU 128 1,000 0.19 (36.8x) [1.05x]

64
QS 1 – 12.4 (–)

vQS MT 16 – 0.7 (17.7x)
QSGPU 256 1,000 0.25 (49.6x) [3.00x]

5,000

32
QS 1 – 33.7 (–)

vQS MT 16 – 1.4 (24.1x)
QSGPU 512 5,000 0.44 (76.6x) [3.2x]

64
QS 1 – 70.7 (–)

vQS MT 16 – 4.9 (14.4x)
QSGPU 256 1,500 1.08 (65.5x) [4.5x]

10,000

32
QS 1 – 74.6 (–)

vQS MT 16 – 3.2 (23.3x)
QSGPU 512 5,000 0.86 (86.7x) [3.7x]

64
QS 1 – 194.8 (–)

vQS MT 16 – 12.5 (15.6x)
QSGPU 256 1,500 2.29 (85.1x) [5.5x]

20,000

32
QS 1 – 183.7 (–)

vQS MT 16 – 7.3 (25.2x)
QSGPU 512 4,000 1.79 (102.6x) [4.1x]

64
QS 1 – 470.5 (–)

vQS MT 16 – 46.2 (10.2x)
QSGPU 256 1,500 4.67 (100.8x) [9.9x]

Y!S1

1,000

32
QS 1 – 12.4 (–)

vQS MT 16 – 0.4 (31x)
QSGPU 128 1,000 0.85 (14.6x) [0.47x]

64
QS 1 – 19.2 (–)

vQS MT 16 – 1.0 (19.2x)
QSGPU 256 1,000 0.75 (25.6x) [1.3x]

5,000

32
QS 1 – 43.8 (–)

vQS MT 16 – 1.9 (23.1x)
QSGPU 512 5,000 0.94 (46.6x) [2x]

64
QS 1 – 83.3 (–)

vQS MT 16 – 10.2 (8.2x)
QSGPU 512 3,000 1.78 (46.8x) [5.7x]

10,000

32
QS 1 – 88.7 (–)

vQS MT 16 – 4.1 (21.6x)
QSGPU 512 5,000 1.56 (56.9x) [2.6x]

64
QS 1 – 186.9 (–)

vQS MT 16 – 14.6 (12.8x)
QSGPU 512 2,000 3.45 (54.2x) [4.2x]

20,000

32
QS 1 – 185.1 (–)

vQS MT 16 – 8.2 (22.6x)
QSGPU 512 5,000 2.82 (65.6x) [2.9x]

64
QS 1 – 377.2 (–)

vQS MT 16 – 35.1 (10.8x)
QSGPU 512 3,000 5.55 (68x) [6.3x]

Istella

1,000

32
QS 1 – 8.9 (-)

vQS MT 16 – 0.3 (29.7x)
QSGPU 128 1,000 0.28 (31.2x) [1.07x]

64
QS 1 – 13.5 (-)

vQS MT 16 – 2.5 (5.4x)
QSGPU 256 1,000 0.37 (36.5x) [6.8x]

5,000

32
QS 1 – 34.5 (-)

vQS MT 16 – 1.2 (28.8x)
QSGPU 512 5,000 0.50 (69x) [2.4x]

64
QS 1 – 69.8 (-)

vQS MT 16 – 3.7 (18.9x)
QSGPU 512 3,000 1.03 (67.8x) [3.6x]

10,000

32
QS 1 – 71.4 (-)

vQS MT 16 – 2.5 (28.6x)
QSGPU 512 5,000 0.96 (74.4x) [2.6x]

64
QS 1 – 167.4 (-)

vQS MT 16 – 8.8 (19x)
QSGPU 512 3,000 2.07 (80.8x) [4.3x]

20,000

32
QS 1 – 157.2 (-)

vQS MT 16 – 7.6 (20.7x)
QSGPU 512 5,000 1.73 (90.9x) [4.4x]

64
QS 1 – 326.1 (-)

vQS MT 16 – 26.1 (12.5x)
QSGPU 512 3,000 3.63 (89.8x) [7.2x]



Parallelizing the Traversal of Large Ensembles of Decision Trees 21

First, we note that QSGPU achieves consistent

speedups over the sequential QS – up to 102.6x, 65.6x,

and 90.9x on MSN-1, Y!S1, and Istella, respectively.

Analogously, QSGPU achieves consistent speedups over

vQS MT – up to 9.9x, 6.3x, and 7.2x for MSN-1, Y!S1,

and Istella, respectively. In general, we observe that

QSGPU achieves the best results over its competitors

when the size of the ensemble gets large in terms of

number of trees and leaves of each tree – indeed, the

best results are always achieved when |T | = 20, 000

and Λ = 64, as the larger computational workload

to score each query-document pair favours the mas-

sive parallelism of GPUs. For smaller models, e.g.,

|T | = 1, 000 and Λ = 64, the advantage of GPU over

multi-threading+SIMD is very limited, as expected.

8 Conclusions

In this paper we presented and evaluated several strate-

gies to parallelize the traversal of large ensembles of de-

cision trees. We motivated this research with the need of

deploying large tree forests in real large-scale settings,

and using such complex ML models to process each in-

coming item within a small time budget. Although we

discussed the various parallelization strategies within

the LtR framework, they are “general”, as the problem

of traversing large ensembles of decision trees is agnostic

of the specific scenario of use: Web or product search,

social media ranking or recommendation, on-line adver-

tisement, classification or regression tasks on big data,

etc.

The main advantage of our parallelization strate-

gies is to provide increased throughput, which in turn

allows to better satisfy quality-of-service constraints.

While the use of larger ensembles favours better ac-

curacy and precision, the reduced scoring times al-

low to stay within smaller time budgets. The proposed

strategies take advantage of the algorithmic framework

introduced by QuickScorer, the state-of-the-art in

the literature, to leverage different types of parallelism

available in modern CPUs and GPUs. We compared

the proposed parallel solutions with the sequential ver-

sion of QuickScorer. The CPU-based paralleliza-

tion strategies, namely vQS-256 (SIMD) and vQS

MT (multi-threading + SIMD), achieved important

speedups over QuickScorer: more precisely, vQS-

256 obtained speedups up to 3.2× (32 leaves per tree)

and 1.8× (64 leaves per tree), while vQS MT achieved

speedups up to 14× (32 leaves per tree) and 12.5× (64

leaves per tree). The performance gains originated from

the exploitation of different types of parallelism coupled

with an efficient use of CPU resources, as observed from

the low-level monitoring of instruction counts, branch

misprediction, and L3 cache-miss rates.

The best results were obtained by the GPU-

based parallelization: GPU-QuickScorer achieved

relevant performance gains with speedups of 102.6× (32

leaves per tree) and 100.8× (64 leaves per tree) over

QuickScorer. These impressive performance gains

are the result of a careful design of the data layout

and of the orchestration of the accesses over the GPU-

QuickScorer data structures of the massive number

of parallel threads run by modern GPUs.
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