Using an Inverted Index Synopsis for Query Latency and Performance Prediction

Nicola Tonellotto University of Pisa <u>nicola.tonellotto@unipi.it</u>

Joint work with Craig Macdonald University of Glasgow <u>craig.macdonald@glasgow.ac.uk</u>

To appear in

ACM Transactions on Information Systems

Who am I?

- MSc in Computer Engineering at University of Pisa (2002)
- PhD in Information Engineering at University of Dortmund & University of Pisa (2008)
- Researcher at ISTI-CNR from 2006 to 2019
- Assistant processor at UNIPI since 2019
- Research topics
 - High performance computing & Clouds
 - Efficiency information retrieval & Web search
 - Distributed computing & Big data platforms
 - Machine learning efficiency

The scale of Web search challenge

georgetown university

XQ

Feedback

III 🚺

🔍 Tutti 🗉 Notizie 🖾 Immagini 🛇 Maps 🕩 Video 🗄 Altro Impostazioni Strumenti

Circa 180.000.000 risultati (0,50 secondi)

www.georgetown.edu 👻 Traduci questa pagina

Georgetown University in Washington DC

They're knitted together in every facet of your **Georgetown** experience – in your studies, your research, your interactions with faculty and the career decisions you ... Admissions & Aid · Graduate Admissions · Our Schools · Office of Undergraduate ...

it.wikipedia.org > wiki > Università_di_Georgetown 💌

Università di Georgetown - Wikipedia

L'università di Georgetown (Georgetown University in inglese) è una università privata (cattolica) statunitense, con sede a Washington DC. È la più antica ...

Facoltà: 1653Motto: Utraque Unum (Entrambi uniti)Rettore: John J. DeGioiaColori: Blu e grigio

Sport · Pallacanestro

Le persone hanno chiesto anche	
Is Georgetown University Ivy League?	~
What is Georgetown University known for?	~
Is Georgetown University prestigious?	~
What GPA do you need to get into Georgetown?	~

Georgetown University

Sito web Indicazioni stradali Salva

Università privata a Washington, Stati Uniti

L'università di Georgetown è una università privata statunitense, con sede a Washington DC. È la più antica università cattolica degli Stati Uniti d'America e uno dei più prestigiosi atenei del paese. Wikipedia

Indirizzo: 3700 O St NW, Washington, DC 20057, Stati Uniti

Stato: Stati Uniti

Tasso di accettazione: 15,7% (2018) IPEDS

Iscrizione: 4.523 (2016)

Mascotte: Jack the Bulldog

Prodotti e servizi: places.singleplatform.com

How many documents? In how long?

- Reports suggest that Google considers a total of 30 trillion
 pages in the indexes of its search engine
 - Identifies relevant results from these 30 trillion in 0.63 seconds
 - Clearly this a **big data** problem!
- To answer a user's query, a search engine doesn't read through all of those pages: the index data structures help it to efficiently find pages that effectively match the query and will help the user
 - Effective: users want relevant search results
 - Efficient: users aren't prepared to wait a long time for search results

Search as a Distributed Problem

• To achieve efficiency at Big Data scale, search engines use many servers:

- *N* & *M* can be very big:
 - Microsoft's Bing search engine has "hundreds of thousands of query servers"

Computing Platform

Source: https://www.pexels.com/photo/datacenter-server-449401/

Ranking in IR

If we know how long a query will take, can we reconfigure the search engines' ranking pipeline?

Query Efficiency Prediction

- Predict how long an unseen query will take to execute, before it has executed.
- This facilitates 3+ manners to make a search engine more efficient:
 - Reconfigure the pipelines of the search engine, trading off a little effectiveness for efficiency
 - 2. Apply more CPU cores to long-running queries
 - Decide how to plan the rewrites of a query, to reduce long-running queries
- In each case, increasing efficiency means increased server capacity and energy savings

Dynamic Pruning: MaxScore

Dynamic Pruning: WAND

Foundations and Trends® in Information Retrieval 12:4-5

Efficient Query Processing for Scalable Web Search

Nicola Tonellotto, Craig Macdonald and ladh Ounis

the essence of knowledge

What makes a single query fast or slow?

Static QEP

- Static QEP (Macdonald et al., SIGIR 2012)
 - a supervised learning task
 - using **pre-computed** term-level **features** such as
 - the length of the posting lists
 - the variance of scored postings for each term
 - Extended for **long-running queries classification** on the Bing search engine infrastructure (Jeon et al., SIGIR 2014)
 - Extended to rewritten queries that include complex query operators (Macdonald et al., SIGIR 2017)

Analytical QEP

- Analytical QEP (Wu and Fang, CIKM 2014)
 - analytical model of query processing efficiency
 - key factor in their model was the number of documents containing pairs of query terms
 - Intersection size not precomputed but estimated with

$$A(t_1, t_2) = \frac{N_1}{N} \times \left(\frac{N_2}{N}\right)^{\delta} \times N,$$

- N = num docs in collection
- N1 = t1 posting list length
- N2 = t2 posting list length
- $\delta = \text{control parameter set to } 0.5$

Dynamic QEP

- **Dynamic QEP** (Kim et al, WSDM 2015)
 - Predictions after a **short period** of query processing **has elapsed**
 - Able to determine **how well** a query is **progressing**
 - Use the period to **better estimate** the query's completion time
 - Supervised learning task
 - Must be **periodically re-trained** as new queries arrive
 - The dynamic **features** are naturally **biased towards the first portion** of the index used to calculate them
 - With various index orderings possible, it is plausible that **the first portion of the index does not reflect well the term distributions** in the rest of the index
 - More accurate than predictions based on pre-computed features or an analytical model

Index Synopsis

Can be used to **estimate the expected number of documents** processed in any query, processed either in **OR mode** (**union** of posting lists) or in **AND mode** (**intersection** of posting lists)

Research Questions

- 1. Compression of an index synopsis
- 2. Space overheads of an index synopsis
- 3. Time overheads of an index synopsis
- 4. Posting list estimates accuracy w.r.t. AND/OR retrieval
- 5. Posting list estimates accuracy w.r.t. dynamic pruning
- 6. Accuracy of **overall response time prediction**
- 7. Accuracy of long-running queries classification

Experimental Setup

- TREC ClueWeb09-B corpus (**50 million English web pages**)
- Indexing and retrieval using the **Terrier** IR platform
- Stopwords removal and stemming
- Docids are assigned according to their descending PageRank score
- Compressed using **Elias-Fano** encoding
- Retrieving **50,000 unique queries** from the TREC 2005 Efficiency Track topics
- Scoring with **BM25**, with a block size of 64 postings for BMW
- Retrieved 1000 documents per query
- Learning performed 4,000 train and 1,000 test queries
- All indices are **loaded in memory** before processing starts
- Single core of a 8-core Intel i7-7770K with 64 GiB RAM
- Sampling probabilities $\gamma = 0.001, 0.005, 0.01, 0.05$

Compression & Space Overheads

v I	Postings (I	M) original	docids	remapped docids		
0 -		,	Reduction	Space (GiB)	Reduction	
1	14,795	19.07	19.07 –			
0.001	15	0.29	66×	0.18	106×	
0.005	74	0.41	$47 \times$	0.27	$71 \times$	
0.01	148	0.56	34× 0.37		$52 \times$	
0.05	739	1.58	$12\times$	12× 1.14		

Remapped docids

Time Overheads

		0.	001	0.005			
	Full	Syn	Total	Syn	Total		
AND	54.3	0.06 (835×)	54.36 (+0.1%)	0.32 (170×)	54.62 (+0.6%)		
OR	450.0	0.45 (1004×)	450.45 (+0.1%)	2.22 (202×)	452.22 (+0.5%)		
MaxScore	87.7	0.08 (1129×)	87.78 (+0.1%)	0.40 (220×)	88.10 (+0.5%)		
Wand	107.4	0.12 (905×)	107.52 (+0.1%)	0.61 (175×)	108.01 (+0.7%)		
BMW	77.8	0.12 (664×)	77.92 (+0.2%)	0.60 (130×)	78.40 (+0.8%)		
				0.05			
		0	0.01		0.05		
	Full	Syn	0.01 Total	Syn	0.05 Total		
AND	Full 54.3			Syn			
AND OR		Syn	Total	Syn 3.22 (17×)	Total		
	54.3	Syn 0.64 (85×)	Total 54.94 (+1.2%)	Syn 3.22 (17×) 22.25 (20×)	Total 57.52 (+5.9%)		
OR	54.3 450.0	Syn 0.64 (85×) 4.36 (103×)	Total 54.94 (+1.2%) 454.36 (+1.0%)	Syn 3.22 (17×) 22.25 (20×) 4.33 (20×)	Total 57.52 (+5.9%) 472.25 (+4.9%)		
OR MaxScore	54.3 450.0 87.7	Syn 0.64 (85×) 4.36 (103×) 0.79 (111×)	Total 54.94 (+1.2%) 454.36 (+1.0%) 88.49 (+0.9%)	Syn 3.22 (17×) 22.25 (20×) 4.33 (20×)	Total 57.52 (+5.9%) 472.25 (+4.9%) 92.03 (+5.2%)		

Union & Intersection Estimates Accuracy

Actual vs. Synopsis Response Times

BMW

Overall Response Time Accuracy

Strategy	MRT	Static	Dynamic	Synopsis RMSE				
e i i i i e e e e e e e e e e e e e e e		RMSE	RMSE	0.001	0.005	0.01	0.05	
MaxScore (Post) MaxScore (Time)	87.7	37.8	48.7	37.0 48.3	25.3 26.1	23.2 19.7	23.5 17.9	
WAND (Post) WAND (Time)	107.4	52.3	63.7	71.4 88.5	62.7 39.5	62.2 33.0	62.5 33.0	
BMW (Post) BMW (Time)	77.8	30.0	33.8	65.2 78.1	60.5 20.1	60.8 17.6	60.2 15.1	

Long-running Query Classification

	Precision				Recall			
	0.001	0.005	0.01	0.05	0.001	0.005	0.01	0.05
						Max	Score	
Static	89.1				76.0			
Dynamic		89	9.4			54	1.5	
Synopsis (Post)	86.1 [‡]	86.0 [‡]	86.9 ^{†‡}	87.3 ^{†‡}	77.2 [‡]	84.9 [‡]	85.0 ^{†‡}	85.9 ^{†‡}
Synopsis (Time)	96.1 [†]	92.9 ^{†‡}	93.9 †‡	95.4 ^{†‡}	46.8^{\dagger}	91.0 †‡	95.0 ^{†‡}	94.8 †‡
						WA	ND	
Static		88	3.5		75.7			
Dynamic		89	0.1		57.9			
Synopsis (Post)	91.7^{\dagger}	90.8 [†]	90.5^{\dagger}	90.9 †	54.0^{\dagger}	57.8^{\dagger}	56.6^{\dagger}	57.4^{\dagger}
Synopsis (Time)	89.7 [‡]	87.6 ^{†‡}	88.7 ^{†‡}	87.5 ^{†‡}	76.7 [‡]	89.9 †‡	91.5 ^{†‡}	92.5 ^{†‡}
						BN	íW	
Static	81.2				67.7			
Dynamic	83.0			65.5				
Synopsis (Post)	$55.4^{\dagger \ddagger}$	56.6 ^{†‡}	56.9 ^{†‡}	55.1 ^{†‡}	$24.9^{\dagger \ddagger}$	$29.0^{\dagger\ddagger}$	$28.0^{\dagger \ddagger}$	$28.8^{\dagger \ddagger}$
Synopsis (Time)	87.3 ^{†‡}	89.0 ^{†‡}	91.0 ^{†‡}	90.7 †‡	80.0 ^{†‡}	85.2 ^{†‡}	85.9 ^{†‡}	88.9 ^{†‡}

Query Performance Prediction

- QPP is another use case for index synopsis
- Can we use synopsis for **post-retrieval QPP**?
- Performance w.r.t. **pre-retrieval QPP on full** index
- Performance w.r.t. **post-retrieval QPP on full** index
- Main findings:
 - many of the post retrieval predictors can be effective on very small synopsis indices
 - 2. high correlations with the same predictors calculated on the full index
 - 3. more effective than the best pre-retrieval predictors
 - 4. computation requires an **almost negligible amount of time**
- More details in the journal article

Conclusions & Future Works

- QEP is fundamental component that **plans a query's execution** appropriately
- Index synopses are **random samples** of complete document indices
- Able to reproduce the dynamic pruning behavior of the MaxScore, WAND and BMW strategies on a full inverted index
 - 0.5% of the original collection is enough to obtain accurate query efficiency predictions for dynamic pruning strategies
 - Used to estimate the processing times of queries on the full index
- Post-retrieval query performance predictors calculated on an index synopsis can

outperform pre-retrieval query performance predictors

- 0.1% of the original collection outperforms pre-retrieval predictors by 73%
- 5% of the original collection outperforms pre-retrieval predictors by 103%
- What about applying index synopses across a **tiered index layout**?
- What about sampling at **snippet/paragraph granularity**?
- How document/snippet sampling can be combined with a neural ranking model for the first-pass retrieval to achieve **efficient neural retrieval**?

Thanks for your attention!