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Who am I?

• MSc in Computer Engineering at University of Pisa (2002) 
• PhD in Information Engineering at University of Dortmund & University of Pisa (2008) 
• Researcher at ISTI-CNR from 2006 to 2019  
• Assistant processor at UNIPI since 2019 
• Research topics 

• High performance computing & Clouds 
• Efficiency information retrieval & Web search 
• Distributed computing & Big data platforms 
• Machine learning efficiency



The scale of Web search challenge



How many documents? In how long?

• Reports suggest that Google considers a total of 30 trillion 

pages in the indexes of its search engine 

• Identifies relevant results from these 30 trillion in 0.63 seconds 

• Clearly this a big data problem! 

• To answer a user's query, a search engine doesn’t read through 

all of those pages: the index data structures help it to 

efficiently find pages that effectively match the query and will 

help the user 
• Effective: users want relevant search results 

• Efficient: users aren't prepared to wait a long time for search results



Search as a Distributed Problem

• To achieve efficiency at Big Data scale, search engines use many servers: 

• N & M can be very big: 
• Microsoft's Bing search engine has "hundreds of thousands of query servers" 
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Computing Platform

Source: https://www.pexels.com/photo/datacenter-server-449401/



Ranking in IR
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• Different models 

• Hundreds of features 

• (Optimised) Sequential processing

• Probabilistic models 

• Few features 

• Inverted indexes 

• Optimised processing

If we know how long a query will take, can we 
reconfigure the search engines' ranking pipeline?



Query Efficiency Prediction

• Predict how long an unseen query will take to execute, before it has 
executed. 

• This facilitates 3+ manners to make a search engine more efficient: 
1. Reconfigure the pipelines of the search engine, trading off a little 

effectiveness for efficiency 

2. Apply more CPU cores to long-running queries 

3. Decide how to plan the rewrites of a query, to reduce long-running 

queries 

• In each case, increasing efficiency means increased server capacity and 
energy savings



Dynamic Pruning: MaxScore
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Dynamic Pruning: WAND
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What makes a single query fast or slow?

2 term queries

4 term queries

Query processing strategy 
(MaxScore, Wand, BMW)

Number of terms

Length of posting lists

Co-occurrence of query terms 
(Posting list union/intersection) 



Static QEP

• Static QEP (Macdonald et al., SIGIR 2012) 

• a supervised learning task 

• using pre-computed term-level features such as 

• the length of the posting lists 
• the variance of scored postings for each term  

• Extended for long-running queries classification on the Bing search 

engine infrastructure (Jeon et al., SIGIR 2014) 

• Extended to rewritten queries that include complex query 

operators (Macdonald et al., SIGIR 2017)



Analytical QEP

• Analytical QEP (Wu and Fang, CIKM 2014) 

• analytical model of query processing efficiency  

• key factor in their model was the number of documents containing 
pairs of query terms  

• Intersection size not precomputed but estimated with 

• N = num docs in collection 
• N1 = t1 posting list length 
• N2 = t2 posting list length 

• 𝛿 = control parameter set to 0.5



Dynamic QEP

• Dynamic QEP (Kim et al, WSDM 2015) 

• Predictions after a short period of query processing has elapsed 

• Able to determine how well a query is progressing 

• Use the period to better estimate the query’s completion time  

• Supervised learning task 

• Must be periodically re-trained as new queries arrive 

• The dynamic features are naturally biased towards the first portion of the index 

used to calculate them 

• With various index orderings possible, it is plausible that the first portion of the 

index does not reflect well the term distributions in the rest of the index 

• More accurate than predictions based on pre-computed features or an analytical 

model



Index Synopsis
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Can be used to estimate the expected number of documents 
processed in any query, processed either in OR mode (union of    
posting lists) or in AND mode (intersection of posting lists)



Research Questions

1. Compression of an index synopsis 

2. Space overheads of an index synopsis 

3. Time overheads of an index synopsis 

4. Posting list estimates accuracy w.r.t. AND/OR retrieval 

5. Posting list estimates accuracy w.r.t. dynamic pruning 

6. Accuracy of overall response time prediction 

7. Accuracy of long-running queries classification



Experimental Setup
• TREC ClueWeb09-B corpus (50 million English web pages) 

• Indexing and retrieval using the Terrier IR platform 

• Stopwords removal and stemming 

• Docids are assigned according to their descending PageRank score 

• Compressed using Elias-Fano encoding 

• Retrieving 50,000 unique queries from the TREC 2005 Efficiency Track topics 

• Scoring with BM25, with a block size of 64 postings for BMW 

• Retrieved 1000 documents per query 

• Learning performed 4,000 train and 1,000 test queries 

• All indices are loaded in memory before processing starts 

• Single core of a 8-core Intel i7-7770K with 64 GiB RAM 

• Sampling probabilities 𝛾 = 0.001, 0.005, 0.01, 0.05



Compression & Space Overheads

Original docids Remapped docids



Time Overheads



Union & Intersection Estimates Accuracy
Intersection Union

Analytical model Index synopsis



Actual vs. Synopsis Response Times
MaxScore WAND

BMW



Overall Response Time Accuracy



Long-running Query Classification



Query Performance Prediction
• QPP is another use case for index synopsis 

• Can we use synopsis for post-retrieval QPP? 

• Performance w.r.t. pre-retrieval QPP on full index 

• Performance w.r.t. post-retrieval QPP on full index 

• Main findings: 

1. many of the post retrieval predictors can be effective on very small 

synopsis indices 

2. high correlations with the same predictors calculated on the full index 

3. more effective than the best pre-retrieval predictors 

4. computation requires an almost negligible amount of time 

• More details in the journal article



Conclusions & Future Works
• QEP is fundamental component that plans a query’s execution appropriately 

• Index synopses are random samples of complete document indices 

• Able to reproduce the dynamic pruning behavior of the MaxScore, WAND and 

BMW strategies on a full inverted index 
• 0.5% of the original collection is enough to obtain accurate query efficiency predictions for dynamic 

pruning strategies 
• Used to estimate the processing times of queries on the full index  

• Post-retrieval query performance predictors calculated on an index synopsis can 

outperform pre-retrieval query performance predictors  
• 0.1% of the original collection outperforms pre-retrieval predictors by 73% 
• 5% of the original collection outperforms pre-retrieval predictors by 103% 

• What about applying index synopses across a tiered index layout? 

• What about sampling at snippet/paragraph granularity? 

• How document/snippet sampling can be combined with a neural ranking model for the 
first-pass retrieval to achieve efficient neural retrieval?



Thanks for your attention!


